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Hydrodynamic and thermal fluctuations:

background elliptic flow

Sound modes in uniform plasma

These short wavelength modes are part of the bath:

W eq
ee (k, t) ≡ 〈e∗(k, t)e(k, t)〉︸ ︷︷ ︸

energy-density flucts

=T 2cv

W eq
nn(k, t) ≡ 〈n∗(k, t)n(k, t)〉︸ ︷︷ ︸

baryon flucts

=Tχδij

Want to measure these thermal fluctuations . . .
But, long wavelength modes will always be out of equilibrium,

and reflect the initial state not the CP.
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Hydrodynamic and thermal fluctuations:

background elliptic flow

Sound modes in uniform plasma

These short wavelength hydro modes are part of the bath:

I For CP search we study flucts in baryon/entropy ratio, n̂ ≡ sδ(n/s)

W eq
n̂n̂(k, t) ≡ 〈n̂∗(k, t)n̂(k, t)〉︸ ︷︷ ︸

baryon/entropy flucts

=
(n
s

)2
cp

Want to measure these thermal fluctuations . . .
But, long wavelength modes will always be out of equilibrium,

and reflect the initial state not the CP.
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Transits of the critical point: a parametric analysis

see also, Berdnikov & Rajagopal; Mukherjee, Venugopalan, Yin; Y. Akamatsu, DT,F. Yan, Y. Yin, 1811.05081

µ

T  critical point

Finite relaxation rate?

What if we miss?

I How does the finite expansion rate limit the critical flucts?

ε ≡ τo︸︷︷︸
micro time

× ∂µu
µ

︸ ︷︷ ︸
expansion rate 1/τQ

=
τo
τQ

The critical fluctuations will reach a maximum of order, 1/εsome−power.
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Estimate of the longest wavelength of thermalized fluctuationsThe maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D
0|{z}

di↵usion coef

⇥ ⌧
Q|{z}

the total time

= `2
max|{z}

the longest wavelength

I Here D
0

is the (thermal) di↵usion coe�cient away from the CP:

D
0

⇠
`2
o

⌧
0

`
o

⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`
o|{z}

microlength

⌧ `
kz|{z}

typical critical wavelength

⌧ `
o

✏�1/2| {z }
`
max

✏ ⌘
⌧
0

⌧
Q
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Di↵usion of �n̂

I The longest wavelength that can be equilibrated by diffusion is

`2∗︸︷︷︸
the longest wavelength

= `2o︸︷︷︸
microlength

× τQ/τo︸ ︷︷ ︸
(total time)/(microtime)

I Find, with D0 ≡ `20/τ0 the diffusion coefficient away from the CP:

`∗ ≡
√
D0τQ ∼ `oε−1/2

The wavelength of thermal fluctuations are short, but still hydrodynamic:

`o︸︷︷︸
microlength

� `∗︸︷︷︸
hydro-kinetic ∼ `0/ε1/2

� L︸︷︷︸
system-size ∼ `0/ε

5 / 33



Estimate of the longest wavelength of thermal critical correlations:

I The coefficient D decreases near the CP, and `∗ is an over-estimate

I We will see that typical critical wavelength is `kz

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max

Numerically these evaluate to with ε = 1/5 and `0 = 1.2 fm

1.2 fm� 1.6 fm� 2.7 fm

I To translate to rapidity divide by τQ, and use ε = `0/τQ

ε0.82︸︷︷︸
`kz range in η

� ε0.5︸︷︷︸
`max range in η

� 1

The critical rapidity correlation length is parametrically smaller than unity
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Picture and hydro-kinetics: Akamatsu, Mazeliauskas, DT, 1606.07742

Long range

Short range
in rapidity soundlets

in rapdity, v2, . . .
I Need a kinetic equation for the

phase-space density of these
sound modes:

W++(t,x,k)︸ ︷︷ ︸
distribution of sound modes

`o
︸︷︷︸

microscopic

� `∗
︸︷︷︸

soundlets

� L ∼ `0/ε
︸ ︷︷ ︸

macroscopic flow v2, v3 . . .
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Picture and hydro-kinetics: Akamatsu, Mazeliauskas, DT, 1606.07742

Long range

Short range
in rapidity soundlets

in rapdity, v2, . . .

I The phase-space density of n̂
reflects the critical flucts:

Wn̂n̂(t,x,k)︸ ︷︷ ︸
distribution of n/s

Will definitely need
hydro-kinetic equation for this!

`o
︸︷︷︸

microscopic

� `∗
︸︷︷︸

soundlets

� L ∼ `0/ε
︸ ︷︷ ︸

macroscopic flow v2, v3 . . .
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Hydrokinetic equation for W n̂n̂(k, t) see also hydro+ by Stephanov,Yin 1712.10305

I Start from dissipative hydro with noise

∂µ(TµνIdeal + Tµνdiss + ξµν) = 0

∂µ(jµIdeal + jµdiss + ξµ) = 0

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q
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Di↵usion of �n̂

I Can derive time evolution equations for the correlators

W ee = 〈δe∗(k, t)δe(−k, t)〉 Wnn = 〈δn∗(k, t)δn(−k, t)〉 , etc

I From Wnn, W ee derive an equation for W n̂n̂: n̂ ≡ sδ(n/s)

∂tW
n̂n̂ = − λk2

cp︸︷︷︸
λ is therm. conduct.

(W n̂n̂ − cp) + grad corrections

From stochastic hydro, find that W n̂n̂ obeys a relaxation equation +
gradient corrections
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Hydrokinetics: Bjorken expansion Akamatsu et al; Martinez and Shäfer

dT ττ

dτ
= −T

ττ + T zz

τ

I The kinetic equation for the phase space distribution read:

∂

∂τ
W++

︸ ︷︷ ︸
phase-space-dist of sound

=− 4η

3sT

(
k2⊥ + k2z

) [
W++ − T 2cv

τ

]

︸ ︷︷ ︸
relaxation to equilibrium

− 1

τ

[
2 + c2s +

k2z
k2⊥ + k2z︸ ︷︷ ︸

expansion

]
W++

I And then the fluctuations modify the stress tensor: `∗ =
√

4πDητ

〈T zz〉 = p −
4
3η + ζ

τ︸ ︷︷ ︸
1st order visc.

+ (e+ p)
1.083

s `3∗︸ ︷︷ ︸
flucts

+ . . .
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Hydrokinetics: Bjorken expansion Akamatsu et al; Martinez and Shäfer

dT ττ

dτ
= −T

ττ + T zz

τ

I The kinetic equation for the phase space distribution read:

∂

∂τ
W++

︸ ︷︷ ︸
phase-space-dist of sound

=− 4η

3sT

(
k2⊥ + k2z

) [
W++ − T 2cv

τ

]

︸ ︷︷ ︸
relaxation to equilibrium

− 1

τ

[
2 + c2s +

k2z
k2⊥ + k2z︸ ︷︷ ︸

expansion

]
W++

I And then the fluctuations modify the stress tensor: `∗ =
√

4πDητ

〈T zz〉 = p −
4
3 (η0+∆η) + (ζ0+∆ζ)

τ︸ ︷︷ ︸
renormalized viscosities

+ (e+ p)
1.083

s `3∗︸ ︷︷ ︸
flucts

+ . . .
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Hydrokinetics: Bjorken expansion Akamatsu et al; Martinez and Shäfer

dT ττ

dτ
= −T

ττ + T zz

τ

I The kinetic equation for the phase space distribution read:

∂

∂τ
W++

︸ ︷︷ ︸
phase-space-dist of sound

=− 4η

3sT

(
k2⊥ + k2z

) [
W++ − T 2cv

τ

]

︸ ︷︷ ︸
relaxation to equilibrium

− 1

τ

[
2 + c2s +

k2z
k2⊥ + k2z︸ ︷︷ ︸

expansion

]
W++

I And then the fluctuations modify the stress tensor: `∗ =
√

4πDητ

〈T zz〉 = p −
4
3 (η0+∆η) + (ζ0+∆ζ)

τ︸ ︷︷ ︸
renormalized viscosities

+ (e+ p)
1.083

s `3∗︸ ︷︷ ︸
flucts ∼ 1/Nparticles

+ . . .
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Hydrokinetics: general background flow An, Basar, Stephanov, Yee 1902.09517

13

The basis vectors in Eq. (4.5) correspond to the eigenmodes of ideal hydrodynamic equations. Their
eigenvalues in Eq. (4.4) correspond to positive and negative frequency sound waves and two degenerate
transverse momentum modes. The last zero mode is a consequence of the orthogonality condition Eq. (3.12).
The transverse modes are degenerate and the basis in this two-dimensional subspace can be chosen arbitrarily.
A convenient explicit choice for t(i) is given in Appendix B.

We can now transform the kinetic equation (4.1) into the diagonal basis of L
(q) by the orthogonal trans-

formation M !  T M 15 and express the equation in terms of new variables:

WAB =  A
AWAB 

B
B . (4.8)

The modes WAk, WkB, and Wkk are constrained to vanish by Eq. (3.12). We can therefore view WAB as
e↵ectively a 4⇥ 4 matrix. Furthermore, since in the diagonal basis,

[L(q), W ]AB = (�A � �B)WAB, (4.9)

ten of the modes, namely W±⌥, W±Ti
and WTi±, oscillate with the frequency of order csq, which is much

faster than the background evolution frequency of order csk. We can use this separation of time scales to
introduce (in addition to spatial coarse graining at scale b described in the Introduction) averaging over time
intervals of order bt such that

csk ⌧ 1/bt ⌧ csq . (4.10)

After such averaging only six components of the matrix W survive and equations simplify considerably (as
noted in [14]). As a result we are left with six modes which can be classified into two sound modes W±±,
two transverse modes WT1T1 and WT2T2 , and two shear modes WT1T2 and WT2T1 . The sound modes are
completely decoupled and satisfy16

u · r̄W± = ⌥csq̂ · r̄W± � �Lq2(W± � Tw) +

✓
±
✓

cs �
ċs

cs

◆
|q|aµ + (@?µu⌫)q

⌫ + 2c2
sq

�!�µ

◆
@W±
@qµ

�
✓

(1 + c2
s + ċs)✓ + ✓µ⌫ q̂

µq̂⌫ ± 1 + 2c2
s

cs
q̂ · a

◆
W± , (4.11)

where

�L = �⇣ +
4

3
�⌘ . (4.12)

The confluent derivative of W± is defined as follows:

r̄µW± ⌘ @µW± + !̊a
µbqa

@W±
@qb

. (4.13)

The transverse and shear modes mix and satisfy 2⇥ 2 matrix equation17

u · r̄cW = �2q2�⌘(cW � Twb1) + (@?µu⌫)q
⌫rµ

(q)
cW �

n
bK,cW

o
+
h
b⌦,cW

i
, (4.14)

where

bKij ⌘ 1

2
✓ �ij + ✓µ⌫t(i)µ t(j)⌫ , and b⌦ij ⌘ !µ⌫t(i)µ t(j)⌫ , i = 1, 2; (4.15)

and we introduced a covariant q-derivative taking into account rotation of the basis t(i)(x, q) of the transverse
modes due to change of q:

rµ
(q)
cW ⌘ @cW

@qµ
+
h
b!µ,cW

i
, where b!ij

µ ⌘ t(i)⌫

@

@qµ
t(j)⌫ . (4.16)

15 Note that since there are derivatives with respect to x and q in Eq. (4.1), one needs to use  T dM = d( T M ) +
[ T d , T M ].

16 For notational simplicity we denote W++ and W�� simply as W+ and W� respectively.
17 Here cW represents the 2 ⇥ 2 matrix WTiTj

. Similarly, the ij indices of the 2 ⇥ 2 matrices bKij , b⌦ij , b!ij
µ , b̊!ij

µ and b1ij = �ij

are suppressed.

Describes how the shear strain and vorticity drive the 
fluctuations from  equilibrium

relaxation to equilibrium 

1. These equations can be formulated as a particle scheme, which are
propagated on top of existing hydro codes

2. Still need to work out how to turn hydro-particles to real particles:
D. Oliinychenko, V. Koch, arXiv:1902.09775
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Stochastic hydro for higher cumulants: Nahrgang, Blum, Schafer, Bass 1804.05728

The stochastic diffusion equation of Model B near the critical point is

∂tn = λ∇2

(
δF
δn

)
+ ∇ · ~ξ︸︷︷︸

noise

with F given by the Landau-Ginzburg functional with c2 ∝ T − Tc

F [δn] = T

∫
d3x

K

2
(∇n)2 + c2δn

2 + c3δn
3 + c4δn

4

4

IV. DYNAMICS OF FLUCTUATION
OBSERVABLES

Having settled the equilibrium benchmark for net-
baryon fluctuations in a finite system, we can now turn
to the dynamics of the critical fluctuations. In the fol-
lowing we consider a diffusion coefficient D that depends
on temperature as D = D0T/T0 with D0 = 1 fm at
T0 = 0.5 GeV. As a first quantity we study the dynam-
ical structure factor and the dynamical scaling behav-
ior near Tc. For this purpose, we analyze the correlator
⟨∆nB(k, t0 + t)∆nB(−k, t0)⟩ for different wavevectors k.
It is found to decay over time ∝ e−t/τk . As one would
expect, the relaxation time τk decreases with increasing
k and becomes larger for fixed mode k as T → Tc.

Considering the modes with k∗ = 1/ξ for the correla-
tion length realized in the fully interacting theory at a
given T , we find that the corresponding relaxation time
τ∗ scales as τ∗ ∝ ξz with z ≃ 4. This is exhibited in
Fig. 2 where we also contrast the scaling behavior with
the scaling exponents z = 3 (dashed line) and z = 5 (dot-
ted line), which give a poor description and are clearly
excluded. The excellent agreement with z ≃ 4 demon-
strates that the expected dynamical critical scaling of
model B is reproduced.

Next, we consider a dynamical evolution of the back-
ground temperature of the system according to

T (τ) = T0

(τ0

τ

)
. (6)

Now, the coupling constants and the diffusion coeffi-
cient are time dependent. At τ0 = 1 fm/c we start
with an equilibrated system at T0 = 0.5 GeV. For the
given temperature evolution Tc is reached at around
τc = τ − τ0 = 2.3 fm/c.

In Fig. 3, we present the results of the real-time dy-
namics for the volume-integrated variance, skewness and
kurtosis. The time at which Tc is reached is indicated
by the vertical line. In comparison with the equilibrium
values we can see that the variance and kurtosis, which
have a simple structure as a function of temperature (see
Fig. 1), have smaller extremal values, which are about
75% of the equilibrium variance and about 50% of the
equilibrium kurtosis. This is an effect of the long relax-
ation times for modes which are of the order of the inverse
correlation length, see Fig. 2, and the non-equilibrium
situation of a rapidly cooling system. In addition we
can observe a dynamical retardation effect, which shifts
these extrema (a slightly stronger shift is observed for
(κσ2)V ) to times larger than τc. The skewness follows
qualitatively this behavior, but quantitative statements
are difficult given the larger uncertainties. The observed
effects, the decrease of extremal values and the retarda-
tion effect, are found to be stronger for slower diffusion
and/or faster cooling.
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FIG. 3. Dynamical evolution of the variance σ2
V , the skewness

(Sσ)V and the kurtosis (κσ2)V as a function of time. The
pseudo-critical temperature Tc is reached at τc = 2.3 fm/c.

V. CONCLUSIONS

In this work we presented first results of a fully dy-
namical treatment of the diffusive behavior of fluctua-
tions near the QCD critical point. Our study takes into
account nonlinear mode couplings, the finite size of the
system, and exact net-baryon number conservation. In
equilibrium we find that these effects limit the growth of
the correlation length ξ near Tc. We observe that the
nonlinear couplings generate non-Gaussian fluctuations
from the Gaussian stochastic noise. The scaling behav-
ior of the variance and the higher-order cumulants with
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The stochastic diffusion equation of Model B near the critical point is

∂tn = λ∇2

(
δF
δn

)
+ ∇ · ~ξ︸︷︷︸

noise

with F given by the Landau-Ginzburg functional with c2 ∝ T − Tc

F [δn] = T

∫
d3x

K

2
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3 + c4δn
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IV. DYNAMICS OF FLUCTUATION
OBSERVABLES

Having settled the equilibrium benchmark for net-
baryon fluctuations in a finite system, we can now turn
to the dynamics of the critical fluctuations. In the fol-
lowing we consider a diffusion coefficient D that depends
on temperature as D = D0T/T0 with D0 = 1 fm at
T0 = 0.5 GeV. As a first quantity we study the dynam-
ical structure factor and the dynamical scaling behav-
ior near Tc. For this purpose, we analyze the correlator
⟨∆nB(k, t0 + t)∆nB(−k, t0)⟩ for different wavevectors k.
It is found to decay over time ∝ e−t/τk . As one would
expect, the relaxation time τk decreases with increasing
k and becomes larger for fixed mode k as T → Tc.

Considering the modes with k∗ = 1/ξ for the correla-
tion length realized in the fully interacting theory at a
given T , we find that the corresponding relaxation time
τ∗ scales as τ∗ ∝ ξz with z ≃ 4. This is exhibited in
Fig. 2 where we also contrast the scaling behavior with
the scaling exponents z = 3 (dashed line) and z = 5 (dot-
ted line), which give a poor description and are clearly
excluded. The excellent agreement with z ≃ 4 demon-
strates that the expected dynamical critical scaling of
model B is reproduced.

Next, we consider a dynamical evolution of the back-
ground temperature of the system according to

T (τ) = T0

(τ0

τ

)
. (6)

Now, the coupling constants and the diffusion coeffi-
cient are time dependent. At τ0 = 1 fm/c we start
with an equilibrated system at T0 = 0.5 GeV. For the
given temperature evolution Tc is reached at around
τc = τ − τ0 = 2.3 fm/c.

In Fig. 3, we present the results of the real-time dy-
namics for the volume-integrated variance, skewness and
kurtosis. The time at which Tc is reached is indicated
by the vertical line. In comparison with the equilibrium
values we can see that the variance and kurtosis, which
have a simple structure as a function of temperature (see
Fig. 1), have smaller extremal values, which are about
75% of the equilibrium variance and about 50% of the
equilibrium kurtosis. This is an effect of the long relax-
ation times for modes which are of the order of the inverse
correlation length, see Fig. 2, and the non-equilibrium
situation of a rapidly cooling system. In addition we
can observe a dynamical retardation effect, which shifts
these extrema (a slightly stronger shift is observed for
(κσ2)V ) to times larger than τc. The skewness follows
qualitatively this behavior, but quantitative statements
are difficult given the larger uncertainties. The observed
effects, the decrease of extremal values and the retarda-
tion effect, are found to be stronger for slower diffusion
and/or faster cooling.

 0

 0.02

 0.04

 0.06

 0.08

σ
2 V

−0.002

−0.001

0

(S
σ

) V

−0.03

−0.02

−0.01

0

0 1 2 3 4 5 6 7 8

(κ
σ

2 ) V

τ−τ0 [fm/c]

FIG. 3. Dynamical evolution of the variance σ2
V , the skewness

(Sσ)V and the kurtosis (κσ2)V as a function of time. The
pseudo-critical temperature Tc is reached at τc = 2.3 fm/c.

V. CONCLUSIONS

In this work we presented first results of a fully dy-
namical treatment of the diffusive behavior of fluctua-
tions near the QCD critical point. Our study takes into
account nonlinear mode couplings, the finite size of the
system, and exact net-baryon number conservation. In
equilibrium we find that these effects limit the growth of
the correlation length ξ near Tc. We observe that the
nonlinear couplings generate non-Gaussian fluctuations
from the Gaussian stochastic noise. The scaling behav-
ior of the variance and the higher-order cumulants with
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The stochastic diffusion equation of Model B near the critical point is
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ical structure factor and the dynamical scaling behav-
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⟨∆nB(k, t0 + t)∆nB(−k, t0)⟩ for different wavevectors k.
It is found to decay over time ∝ e−t/τk . As one would
expect, the relaxation time τk decreases with increasing
k and becomes larger for fixed mode k as T → Tc.

Considering the modes with k∗ = 1/ξ for the correla-
tion length realized in the fully interacting theory at a
given T , we find that the corresponding relaxation time
τ∗ scales as τ∗ ∝ ξz with z ≃ 4. This is exhibited in
Fig. 2 where we also contrast the scaling behavior with
the scaling exponents z = 3 (dashed line) and z = 5 (dot-
ted line), which give a poor description and are clearly
excluded. The excellent agreement with z ≃ 4 demon-
strates that the expected dynamical critical scaling of
model B is reproduced.

Next, we consider a dynamical evolution of the back-
ground temperature of the system according to

T (τ) = T0
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)
. (6)

Now, the coupling constants and the diffusion coeffi-
cient are time dependent. At τ0 = 1 fm/c we start
with an equilibrated system at T0 = 0.5 GeV. For the
given temperature evolution Tc is reached at around
τc = τ − τ0 = 2.3 fm/c.

In Fig. 3, we present the results of the real-time dy-
namics for the volume-integrated variance, skewness and
kurtosis. The time at which Tc is reached is indicated
by the vertical line. In comparison with the equilibrium
values we can see that the variance and kurtosis, which
have a simple structure as a function of temperature (see
Fig. 1), have smaller extremal values, which are about
75% of the equilibrium variance and about 50% of the
equilibrium kurtosis. This is an effect of the long relax-
ation times for modes which are of the order of the inverse
correlation length, see Fig. 2, and the non-equilibrium
situation of a rapidly cooling system. In addition we
can observe a dynamical retardation effect, which shifts
these extrema (a slightly stronger shift is observed for
(κσ2)V ) to times larger than τc. The skewness follows
qualitatively this behavior, but quantitative statements
are difficult given the larger uncertainties. The observed
effects, the decrease of extremal values and the retarda-
tion effect, are found to be stronger for slower diffusion
and/or faster cooling.

 0

 0.02

 0.04

 0.06

 0.08

σ
2 V

−0.002

−0.001

0

(S
σ

) V

−0.03

−0.02

−0.01

0

0 1 2 3 4 5 6 7 8

(κ
σ

2 ) V

τ−τ0 [fm/c]

FIG. 3. Dynamical evolution of the variance σ2
V , the skewness

(Sσ)V and the kurtosis (κσ2)V as a function of time. The
pseudo-critical temperature Tc is reached at τc = 2.3 fm/c.

V. CONCLUSIONS

In this work we presented first results of a fully dy-
namical treatment of the diffusive behavior of fluctua-
tions near the QCD critical point. Our study takes into
account nonlinear mode couplings, the finite size of the
system, and exact net-baryon number conservation. In
equilibrium we find that these effects limit the growth of
the correlation length ξ near Tc. We observe that the
nonlinear couplings generate non-Gaussian fluctuations
from the Gaussian stochastic noise. The scaling behav-
ior of the variance and the higher-order cumulants with

4

IV. DYNAMICS OF FLUCTUATION
OBSERVABLES

Having settled the equilibrium benchmark for net-
baryon fluctuations in a finite system, we can now turn
to the dynamics of the critical fluctuations. In the fol-
lowing we consider a diffusion coefficient D that depends
on temperature as D = D0T/T0 with D0 = 1 fm at
T0 = 0.5 GeV. As a first quantity we study the dynam-
ical structure factor and the dynamical scaling behav-
ior near Tc. For this purpose, we analyze the correlator
⟨∆nB(k, t0 + t)∆nB(−k, t0)⟩ for different wavevectors k.
It is found to decay over time ∝ e−t/τk . As one would
expect, the relaxation time τk decreases with increasing
k and becomes larger for fixed mode k as T → Tc.

Considering the modes with k∗ = 1/ξ for the correla-
tion length realized in the fully interacting theory at a
given T , we find that the corresponding relaxation time
τ∗ scales as τ∗ ∝ ξz with z ≃ 4. This is exhibited in
Fig. 2 where we also contrast the scaling behavior with
the scaling exponents z = 3 (dashed line) and z = 5 (dot-
ted line), which give a poor description and are clearly
excluded. The excellent agreement with z ≃ 4 demon-
strates that the expected dynamical critical scaling of
model B is reproduced.

Next, we consider a dynamical evolution of the back-
ground temperature of the system according to

T (τ) = T0

(τ0

τ

)
. (6)

Now, the coupling constants and the diffusion coeffi-
cient are time dependent. At τ0 = 1 fm/c we start
with an equilibrated system at T0 = 0.5 GeV. For the
given temperature evolution Tc is reached at around
τc = τ − τ0 = 2.3 fm/c.

In Fig. 3, we present the results of the real-time dy-
namics for the volume-integrated variance, skewness and
kurtosis. The time at which Tc is reached is indicated
by the vertical line. In comparison with the equilibrium
values we can see that the variance and kurtosis, which
have a simple structure as a function of temperature (see
Fig. 1), have smaller extremal values, which are about
75% of the equilibrium variance and about 50% of the
equilibrium kurtosis. This is an effect of the long relax-
ation times for modes which are of the order of the inverse
correlation length, see Fig. 2, and the non-equilibrium
situation of a rapidly cooling system. In addition we
can observe a dynamical retardation effect, which shifts
these extrema (a slightly stronger shift is observed for
(κσ2)V ) to times larger than τc. The skewness follows
qualitatively this behavior, but quantitative statements
are difficult given the larger uncertainties. The observed
effects, the decrease of extremal values and the retarda-
tion effect, are found to be stronger for slower diffusion
and/or faster cooling.
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V. CONCLUSIONS

In this work we presented first results of a fully dy-
namical treatment of the diffusive behavior of fluctua-
tions near the QCD critical point. Our study takes into
account nonlinear mode couplings, the finite size of the
system, and exact net-baryon number conservation. In
equilibrium we find that these effects limit the growth of
the correlation length ξ near Tc. We observe that the
nonlinear couplings generate non-Gaussian fluctuations
from the Gaussian stochastic noise. The scaling behav-
ior of the variance and the higher-order cumulants with
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The kurtosis is not enhanced 
once  the system is expanding!

A cooling fluid in time:
T / 1/⌧

<latexit sha1_base64="zQiWotVJJ6+KgSNHiT0VmIW5tw0="></latexit>

see also Plumberg, Pratt 1712.09298 ; M. Singh,et al 1807.05451; K. Murase, Kurita, T. Hirano 1809.04773
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Evolution of two point functions W n̂n̂ near the critical point

50 fm
10 fm

cellBjorken
tube

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q
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Di↵usion of �n̂cell

W n̂n̂ =?
<latexit sha1_base64="gZT5CySUoNYZ9LiG2qUexSO5OQ0="></latexit>

I Only need to simulate W n̂n̂ in a single fluid cell!

I Define t = 0 as the time in the LRF the cell goes through the CP

Entropy conservation:
∆s(t)

sc
=

t

τQ

Baryon conservation:
∆n(t)

nc
=

t

τQ
with ∆n ≡ n− nc and ∆s ≡ s− sc

How does W n̂n̂ evolve on these trajectories, and with a finite
expansion rate, ∂µu

µ ≡ 1/τQ ?
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Trajectories in n, s plane and mapping QCD to the Ising model
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t = 0
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I The EOS and correlation length ξ(t) vs. time are known, after
specifying the QCD to Ising map:

∆s←→ ∆MIsing ∆TQCD ←→ ∆HIsing

∆n←→ ∆eIsing −∆µQCD ←→ ∆TIsing

Most modeling has used this simple map, and not a linear combination
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Rethinking the QCD to Ising Map M. Pradeep, Stephanov 1905.13247

I Close to the chiral limit mq = 0, the CP is close to a tri-critical point.

I This leads to the following expectations:

12

FIG. 5: The one-loop contribution of fluctuations compared to the tree-level coupling. The fluctuation contribution
diverges as ⇠✏, where ✏ = 4� d. The mean-field approximation breaks down at su�ciently large ⇠ when the

contribution of fluctuations is no longer negligible. The scaling of u ⇠ �2
c ⇠ m

2/5
q follows from Eq. (4.11).

FIG. 6: Schematic representation of the scaling of various parameters characterizing the location, the size and the
shape of the Ginzburg region (shown in blue) around the QCD critical point in the T vs µ plane for small quark

mass mq. The empty circle denotes the location of the tricritical point at mq = 0. The dotted and dashed lines are

the r = 0 and h = 0 axes, respectively, with an angle between them vanishing as m
2/5
q in the chiral limit.

In this section we study the e↵ects of the fluctuations to see if and how our mean-field results are modified in the
Ginzburg region. We are going to use ✏ expansion to order ✏2 to address this question. We shall focus on our main
result – the convergence of the r = 0 and h = 0 slopes in the chiral limit mq ! 0 described by Eq. (4.20).

The result we derived using mean-field theory could be potentially modified if the contributions of the fluctuations
modify the expression for r̄ in Eq. (4.13). An obvious contribution to the �2 in the e↵ective potential ⌦ comes from
a tadpole diagram. This correction, however, does not break the Z2 symmetry which is necessary to induce the
additional mixing of r and h needed to change the direction of the r = 0 axis. 6

Therefore, to induce r � h mixing via fluctuations we would need a Z2 breaking term. Furthermore, r � h mixing
violates scaling, since h ⇠ r�� and thus we need terms which violate scaling by r���1. In mean-field theory this
corresponds to scaling violations of order r1/2, which are produced by terms in the potential ⌦ which scale as r5/2,
i.e., operators of dimension 5. We have already seen how operator �5 induces r � h mixing in Section III. Here we
need to generalize this discussion to include e↵ects of fluctuations.

As usual, we start at the upper critical dimension d = 4 and then expand in ✏ = 4 � d. When � is a fluctuating
field, in d = 4, the scaling part of the potential ⌦ also includes additional dimension 4 operator, (r�)2, i.e.,

⌦ =
1

2
(r�)2 +

r̄

2
�2 +

u

4
�4 � h̄� + . . . , (6.1)

where ellipsis denotes higher-dimension operators. While �5 is the only dimension five Z2 breaking term in the mean-
field theory, when fluctuations of � are considered there are two such terms: �5 and �2r2�. However, we shall see
that only one special linear combination of these terms has the scaling property needed to induce r� h mixing when
d < 4.

To identify this linear combination let us observe that using the transformation of variables � ! � + ��, where
�� = �v(�2� r̄/u) similar to Eq. (3.6), we can cancel a certain linear combination of �5 and �2r2�, while introducing
additional �2 term:

�⌦ = ��
@⌦

@�
= �v

�
u�5 � �2r2�

�
+ vh̄�2 + . . . , (6.2)

6 More explicitly, such contributions (infrared singular at the critical point, r = 0) are of order ✏r log r �2. Together with the tree-level
term r�2, they assemble into r�����2 as dictated by scaling, where �� � � = 1 + O(✏) is the actual, non-mean-field value of the
corresponding critical exponent (see also Ref. [21, 22]). The correction to the critical exponent, obviously, does not change the condition
r = 0.

Usual Modeling New theoretical expectation
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I Changes (non-universal) estimates of bulk viscosity near CP:
Martinez, Schäfer, Skokov 1906.11306

ζ

s
' (0.00042↔ 0.8)︸ ︷︷ ︸

usual ↔ new

(
4π
η0
s

)( ξ

ξ0

)2.8
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How do the two point functions evolve while transiting the CP?

We transit the CP:

�s(t)
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t = 0
<latexit sha1_base64="l0EI5Y7MJuJcIITRqZ3cpDnH21E=">AAACB3icbVDLSgMxFM3UV62vqks3wVZwVWbqwm6EghuXFZy20A4lk8m0oXkMSUYoQz/AlVv9Cnfi1s/wI/wHM+0stPVA4HDOvZybEyaMauO6X05pY3Nre6e8W9nbPzg8qh6fdLVMFSY+lkyqfog0YVQQ31DDSD9RBPGQkV44vc393iNRmkrxYGYJCTgaCxpTjIyV/Lq5ceujas1tuAvAdeIVpAYKdEbV72EkccqJMJghrQeem5ggQ8pQzMi8Mkw1SRCeojEZWCoQJzrIFsfO4YVVIhhLZZ8wcKH+3sgQ13rGQzvJkZnoVS8X//MGqYlbQUZFkhoi8DIoThk0EuY/hxFVBBs2swRhRe2tEE+QQtjYfv6khNxuw1CyKE+p2H681TbWSbfZ8K4azftmrd0qmiqDM3AOLoEHrkEb3IEO8AEGFDyDF/DqPDlvzrvzsRwtOcXOKfgD5/MHXtiYZQ==</latexit>

∆n←→ ∆eIsing

∆s←→ ∆MIsing

And solve the hydro-kinetic equations for

∂tW
n̂n̂ = − λk2

cp(t)︸ ︷︷ ︸
relaxation rate Γ(k, t)

(W n̂n̂ − cp(t))
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Critical slowing down: Son,Stephanov;Berdnikov,Rajagopal

∂tW
n̂n̂ = − λk2

cp︸︷︷︸
relaxation rate Γ(k)

(W n̂n̂ − cp)

I Substituting cp = χo (ξ/`o)
2−η and into the EOM with kξ ∼ 1

Γ(ξ−1) ≡ λ

χo`o
2

︸ ︷︷ ︸
1/τo

× 1

(ξ(t)/`o)4−η︸ ︷︷ ︸
goes to 0 at CP

I The correlation length diverges, ξ(t) = `o(
τQ
t )aν a ≡ 1/(1− α), aν ' 0.71

Γ =
1

τ0

(
t

τQ

)aνz
where z = 4− η.

At CP, the hydro fluctuations relax infinitely slowly,
while the rate of change in equilibrium is fast ∂tξ/ξ ∼ 1/t
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The Kibble-Zurek scales Mukherjee, Venugopalan, Yin 1506.00645

I When is this rate in change in equilibrium
comparable to the relaxation rate Γ ?

∣∣∣∂tξ
ξ
∼ 1

t

∣∣∣
︸ ︷︷ ︸

rate-of change of ξ(t)

=
(|t|/τQ)aνz

τo
= Γ

︸ ︷︷ ︸
relaxation rate

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q

3 / 3

Di↵usion of �n̂

I This determines a characteristic Kibble-Zurek time tkz

tkz = ε1/(aνz+1)τQ = ε0.26τQ

I Kibble-Zurek length is the correlation length at this time

`kz = ξ(tkz) = `oε
−aν/(aνz+1) = `oε

−0.19

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max
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Solution for W n̂n̂
see also Shanjin Wu, Zeming Wu, Huichao Song 1711.09518; Rajagopal et al

I All lengths and times are in units of the Kibble-Zurek length and time

I The size of the fluctuations grow to χkz = χ0`
2−η
kz

W n̂n̂ ∝ C n̂n̂
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t/tkz = −3
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/
χ
k
z
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t/tkz=− 3,−2,−1,−0.1

equilibrium

Before critical point
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Solution for W n̂n̂
see also Shanjin Wu, Zeming Wu, Huichao Song 1711.09518; Rajagopal et al
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Solution for W n̂n̂
see also Shanjin Wu, Zeming Wu, Huichao Song 1711.09518; Rajagopal et al
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Solution for W n̂n̂
see also Shanjin Wu, Zeming Wu, Huichao Song 1711.09518; Rajagopal et al
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Summary: a parametric picture of the CP transit

1. The small parameter is the microscopic length to macroscopic length:

ε =
τ0
τQ

=
micro scale

macro scale
' 1

7

2. Hierarchy of scales:

`0︸︷︷︸
microlength

� `kz︸︷︷︸
longest critical-fluct

� `∗︸︷︷︸
hydro-kinetics

� `hydro︸ ︷︷ ︸
v2 etc

which are of relative order

ε� ε0.82 � √ε� 1 or 0.14� 0.21� 0.38� 1

3. The fluctuations are larger than the baseline susceptibility χ0:

C n̂n̂

χ0
∼
(
`kz
`0

)2−η
= ε−0.37 ∼ 2.0

but live only a (parametrically) short time

tkz ∼ ε0.26 τQ or tkz ∼ 0.6 τQ
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Short range structure of ridge

Partially equilibrated fluctuations

Normally equilibrated except at CP

responsible for critical IR behavior

Particles

Resonance decay to non−flow

Modified non−flow

k ∼ 1
ℓo

k ∼ kkz

Expanding plasma k ∼ 1
L

v2, v3, . . .

k ∼ k∗



How to measure such short range correlations?

C(η1, η2) =

〈
dN
dη1

dN
dη2

〉

〈
dN
dη1

〉〈
dN
dη2

〉

The ratio of the correlation function between opposite-charge and same-charge pairs can be approximated
by:

R(⌘1, ⌘2) ⇡ 1 + �+�SRC(⌘1, ⌘2) � �±±SRC(⌘1, ⌘2) (11)

where the two �+�SRC and �±±SRC distributions represent the SRC for the opposite-charge pairs and same-
charge pairs, respectively, and the LRC and single-particle modes cancel out in the ratio, since all relevant
deviations from unity are small. Assuming that the shape of the SRC component factorizes in ⌘� and ⌘+
and the shape along ⌘+ is the same for the opposite-charge and same-charge pairs, the ratio R(⌘1, ⌘2) can
be further simplified as:

R(⌘+, ⌘�) ⇡ 1 + f (⌘+)
⇥
g+�(⌘�) � g±±(⌘�)

⇤
, �+�SRC = f (⌘+)g+�(⌘�), �±±SRC = f (⌘+)g±±(⌘�) (12)

where f (⌘+) describes the shape along ⌘+ and can be calculated via Eq. (10). The functions g+� and g±±

describe the SRC along the ⌘� direction for the two charge combinations, which di↵er in both magnitude
and shape.

In order to estimate the g(⌘�) function for same-charged pairs, the CN(⌘+, ⌘�) distributions for same-
charge pairs are projected into one-dimensional (1-D) ⌘� distributions over a narrow slice |⌘+| < 0.4. The
distributions, denoted by CN(⌘�), are shown in the second column of Fig. 4 for the same-charge pairs
in Pb+Pb and p+Pb collisions. The SRC appears as a narrow peak on top of a distribution that has an
approximately quadratic shape. Therefore a quadratic fit is applied to the data in the region of |⌘�| > 1.5,
and the di↵erence between the data and fit in the |⌘�| < 2 region is taken as the estimated SRC component
or the g(⌘�) function, which is assumed to be zero for |⌘�| > 2. This range (|⌘�| > 1.5) is about twice
the width of the short-range peak in the R(⌘+, ⌘�) distribution along the ⌘� direction (examples are given
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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= +

Correlation function Short Range = "Non-flow" Long range rapidity flucts

Find the CP in here
at lower energy 

(perhaps with machine learning
Steinheimer  et al 1906.06562)

What’s in the “non-flow” correlations? How is it correlated with flow?
Try to probe `kz. Study pairs with ∆p ∼ 100 MeV ∼ kkz ∼ 1

2 fm
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Thank you!


