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What is the problem?
• CGC initial condition: Longitudinal color E & B fields
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What is the problem?
• Hydrodynamic initial condition at ~1fm/c
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Isotropization in Bjorken expansion
• Holographic approach • QCD effective kinetic theory
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hydrodynamics. On the other hand, the numerical work of
[10] necessarily introduced a deformation of the physical
4-dimensional metric to pump energy and momentum into
the vacuum at early times and create, in this way, a far-
from-equilibrium state. Such a way of generating the initial
state precludes the analysis of the physical evolution
starting from ! ¼ 0, in particular, the investigation of the
influence of the initial conditions on thermalization and
entropy production that we are interested in.

Motivated by this, we developed a new numerical
framework using the Arnowitt-Deser-Misner formalism
of numerical relativity and analyzed the evolution of the
plasma system starting from a range of initial conditions.
These correspond, in our setup, to specifying a single
metric coefficient function (initial profile) for the initial
geometry on the hypersurface ! ¼ 0. The initial hyper-
surface is the same as in [8], however, without any
spurious coordinate singularities. Subsequently we solve
numerically 5-dimensional Einstein’s equations and ob-
tain the plasma energy-momentum tensor from the
asymptotics of the solution at the anti–de Sitter boundary.
The details of this setup can be found in a companion
article [11], while in the present Letter we will concen-
trate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics.—The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function hT!!i—the energy density at
midrapidity "ð!Þ. The longitudinal and transverse pressure
are consequently given by

pL ¼ $"$ !
d

d!
" and pT ¼ "þ 1

2
!
d

d!
": (1)

It is quite convenient to eliminate explicit dependence on
the number of colors Nc and degrees of freedom by in-
troducing an effective temperature Teff through

hT!!i & "ð!Þ & N2
c
3

8
"2T4

eff : (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a ther-
mal system with an identical energy density as "ð!Þ.

All-order viscous hydrodynamics amounts to presenting
the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities u# and their derivatives
with coefficients being proportional to appropriate powers
of Teff , the proportionality constants being the transport
coefficients. For the case of N ¼ 4 plasma, the above
mentioned form of T#$ is not an assumption but a result of
a derivation from AdS/CFT [7]. Hydrodynamic equations
are just the conservation equations @#T

#$ ¼ 0, which are
by construction first-order differential equations for Teff .

In the case of boost-invariant conformal plasma, this
leads to a universal form of first-order dynamical equations
for the scale invariant quantity w ¼ Teff!, namely,

!

w

d

d!
w ¼ FhydroðwÞ

w
; (3)

where FhydroðwÞ is completely determined in terms of the
transport coefficients of the theory, much in the spirit of
[12]. For N ¼ 4 plasma at strong coupling, FhydroðwÞ=w
is known explicitly up to terms corresponding to 3rd order
hydrodynamics [13]
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The importance of formula (3) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms of
arbitrarily high degree, then on a plot of !

w
d
d!w & FðwÞ=w

as a function of w trajectories for all initial conditions
would lie on a single curve given by FhydroðwÞ=w. If, on
the other hand, genuine nonequilibrium processes would
intervene, we would observe a wide range of curves which
would merge for sufficiently large w when thermalization
and transition to hydrodynamics would occur.
In Fig. 1(a) we present this plot for 29 trajectories

corresponding to different initial states. It is clear from
the plot that nonhydrodynamic modes are very important in
the initial stage of plasma evolution, yet for all the sets of
initial data, for w> 0:7 the curves merge into a single
curve characteristic of hydrodynamics. In Fig. 1(b) we

show a plot of pressure anisotropy 1$ 3pL

" & 12 FðwÞ
w $ 8

for a selected profile and compare this with the correspond-
ing curves for 1st, 2nd, and 3rd order hydrodynamics. We
observe, on the one hand, a perfect agreement with
hydrodynamics for w> 0:63 and, on the other hand, a
quite sizable pressure anisotropy in that regime, which is
nevertheless completely explained by dissipative hydro-
dynamics (see [10] for similar conclusion).
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of ! d

d!w from the 3rd
order hydro expression (4)

FIG. 1 (color online). (a) FðwÞ=w versus w for all 29 initial
data. (b) Pressure anisotropy 1$ 3pL

" for a selected profile.

Dashed lines (from above) represent 2nd, 1st, and 3rd order
hydrodynamic fits, respectively.
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FIG. 2. Different phases of weak coupling equilibration (à la “bottom-up”) for a Bjorken expanding plasma. Different panels show the
gluon-momentum distribution function f̄ (τ, p) in the (px, pz ) plane as a function of scaled time τTid./(4πη/s): (a) The initial distribution is
broadened by elastic 2 ↔ 2 scattering; (b) inelastic 1 ↔ 2 splitting and minijet quenching build up a low-momentum thermal bath; (c) the
distribution approaches local thermal equilibrium but has significant corrections which are described by viscous hydrodynamics. The initial
conditions for f̄ are given by Eq. (7) and the evolution is done for the coupling constant λ = 10 (with η/s ≈ 0.62). The color scale represents
the distribution function in the range 0.1 < f̄ < 5.

the ’t Hooft coupling, λ = 10, 15, 20, 25. Motivated by previ-
ous work [37,47], we have rescaled the time and stress axes
in order to fairly compare the physics at different values of
the coupling. Specifically, at asymptotically late times the
temperature approaches ideal hydrodynamics, parametrized
as

Tid.(τ ; %T ) ≡ %T

(τ%T )1/3
, (10)

FIG. 3. Equilibration of the different components of the back-
ground energy-momentum tensor. After normalizing the vertical axis
by the asymptotic values, Eq. (12), and expressing time on the
horizontal axis in terms of the scaled time variable, Eq. (16), the
entire evolution collapses onto a single curve for a range of coupling
constants λ = 10−25 corresponding to η/s ≈ 0.62−0.16.

where %T is a dimensionful integration constant

%2
T ≡ lim

τ→∞
(τT 3) . (11)

In Fig. 3, we first normalized the stress on the vertical axis by
its asymptotic ideal hydrodynamics expectation

T
µν

id. (τ ) = νg
π2

30
T 4

id.(τ ) diag
(
1, 1

3 , 1
3 , 1

τ 2
1
3

)
(12)

and then rescaled the time on the horizontal axis by the
equilibrium relaxation time τR(τ ), which for typical modes
is determined by the shear viscosity and the ideal temperature
Tid.(τ ; %T ) as

τR(τ ; %T ) ≡ η/s
Tid.(τ ; %T )

. (13)

After these rescalings, the stress tensor follows a universal
curve which is approximately independent of the coupling
constant, at least for the range of couplings considered in this
work.

Such a scaling is guaranteed to work at late times where
kinetic theory matches viscous hydrodynamics. Indeed, in
second-order conformal hydrodynamics the energy density in
a Bjorken expansion has the following asymptotic form (see
Ref. [48] and Appendix A 1):

e(τ )

νg
π2

30 T 4
id.(τ )

= 1 − 8
3

η/s
τTid.

+ 8
9

(3 − C2)
(

η/s
τTid.

)2

, (14)

where

C2 = τπ

η/(sT )

(
1 − λ1

τπη

)
(15)

is a dimensionless combination of second-order transport
coefficients τπ , λ1, and η/s. In leading-order kinetic theory,
all transport coefficients are functions of the coupling constant
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Modern view of hydro applicability
• Hydrodynamics is a low energy effective theory near equilibrium

Hydro modes (conserved densities, NG modes, gauge fields)

Based on gradient expansion                     and symmetry!"#$%&
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Modern view of hydro applicability
• Why gradient expansion?

”non-hydro modes”
(fast modes)

Hydro modes (conserved densities, NG modes, gauge fields)

3

“Non-hydro modes” are quickly adjusted to the surrounding 
macroscopic condition if its variation is small à !"#$~&'#($ + ⋯



Modern view of hydro applicability
• What if the gradient is large?

Hydro modes (conserved densities, NG modes, gauge fields)

Once the ”non-hydro modes” are adjusted to the large gradient, 
they are not dynamical anymore à

3

”non-hydro modes”
(fast modes)
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Modern view of hydro applicability
• Hydro-like description can be extended further when

1. Non-hydro modes are ineffective
2. Their non-perturbative response to large gradient is known

1. Hydrodynamic Attractor ‒ non-equilibrium frontier
2. Hydrodynamic Fluctuations ‒ small size frontier

Romatschke 18

I will talk about

3

What I will not talk about:
• Initial color fields
• Decoherence of initial color fields to particles
• Plasma instabilities
• Transverse expansions



1. Hydrodynamic Attractor



Examples of hydrodynamic attractor
• Conformal causal hydrodynamics in Bjorken expansion

1. Hydro mode = energy density

2. Non-hydro mode = shear mode !
• Relaxation vs. expansion + nonlinear

Heller-Spalinski 15

becomes ill defined. Perhaps unsurprisingly, truncating
Eq. (10) at first or second order gives results distinctly
different from the attractor at very small w. The magnitude
of this difference depends on the values of the transport
coefficients (this point is discussed further in the
Supplemental Material [20]). Assuming N ¼ 4 SYM
parameter values, we see that adopting just the viscous
hydrodynamics constitutive relations provides a remark-
ably good approximation of the attractor for a wide range of
w. In particular, this holds with an error smaller than 10%
for w > 0.5.
Examining the behavior of f for w close to zero, one

finds two solutions, one of which is stable:

fðwÞ ¼
2

ffiffiffiffiffiffiffiffi
CτΠ

p
þ

ffiffiffiffiffiffi
Cη

p

3
ffiffiffiffiffiffiffiffi
CτΠ

p þOðwÞ: ð12Þ

By setting the initial value of f at w ≈ 0 arbitrarily close to
Eq. (12), the attractor can be determined numerically with
the result shown in Fig. 1.
Another way of characterizing the attractor is to expand

Eq. (9) in derivatives of f—this is an analog of the slow-roll
expansion in theories of inflation (see, e.g., Ref. [21]). At
leading order one finds

fðwÞ ¼ 2

3
−

w
8CτΠ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64CηCτΠ þ 9w2

q

24CτΠ
: ð13Þ

Continuing this to second order gives an analytic repre-
sentation of the attractor which matches the numerically
computed curve even for w as small as 0.1.
Finally, one can also construct the attractor in an

expansion around w ¼ 0 starting with the fðwÞ given by
Eq. (12). It turns out that the radius of convergence of this
series is finite.
All three expansion schemes described above are

consistent with the numerically determined attractor.

Hydrodynamic gradient expansion at high orders.—In
what follows we focus on the hydrodynamic expansion, the
expansion in powers of 1=w. It is straightforward to
generate the gradient expansion up to essentially arbitrarily
high order (in practice, we chose to stop at 200). The
coefficients fn of the series solution

fðwÞ ¼
X∞

n¼0

fnw−n ð14Þ

show factorial behavior at large n, as seen in Fig. 2. This is
analogous to the results obtained in Ref. [6] for the case of
N ¼ 4 SYM theory.
In view of the divergence of the hydrodynamic expan-

sion, we turn to the Borel summation technique. The Borel
transform of f is given by

fBðξÞ ¼
X∞

n¼0

fn
n!

ξn ð15Þ

and results in a series which has a finite radius of
convergence. Note that in Eq. (15) large w corresponds
to small ξ. To invert the Borel transform, it is necessary to
know the analytic continuation of series (15), which we
denote by ~fBðξÞ. The inverse Borel transform

fRðwÞ ¼
Z

C
dξe−ξ ~fBðξ=wÞ ¼ w

Z

C
dξe−wξ ~fBðξÞ; ð16Þ

whereC denotes a contour in the complex plane connecting
0 and ∞, is interpreted as a resummation of the original
divergent series (14). To carry out the integration, it is
essential to know the analytic structure of ~fBðξÞ.
We perform the analytic continuation using diagonal

Padé approximants [22], given by the ratio of two poly-
nomials of order 100. This function has a dense sequence of
poles on the real axis, starting at ξ0 ¼ 7.21187, which
signals the presence of a cut originating at that point [23].

FIG. 1 (color online). The blue lines are numerical solutions of
Eq. (8) for various initial conditions; the thick magenta line is the
numerically determined attractor. The red dashed and green
dotted lines represent first and second order hydrodynamics.

FIG. 2 (color online). The large order behavior of the hydro-
dynamic series. The slope is consistent with the location of the
singularity nearest the origin, as given by Eq. (17).
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Examples of hydrodynamic attractor
• RTA kinetic theory and its approximations

1. Non-hydro modes
• Kinetic theory contains ∞ of them
• Causal hydros have only one

2. Causal hydros work ~10% errors

Strickland-Noronha-Denicol 18

Causal hydro = a far-from-eq. hydro!

Why does causal hydro work well 
already from early times?

4

(RTA = relaxation time approximation)

longitudinal pressure. As can be seen from the right panel,
both the MIS and DNMR attractors “pull” the system
towards negative longitudinal pressures since φ > 3/4 at
early times corresponds to small w̄. This behavior does not
occur in aHydro since, in this case, 1/2 < φ < 3/4.
Next we turn to Fig. 3 where we compare the aHydro,

MIS, and DNMR attractors to the corresponding quantity
obtained from the exact solution to the 0þ 1d RTA
Boltzmann equation (41). Additionally, in Fig. 3 we
include a curve showing the Navier-Stokes (NS) result [45]

φNS ¼
2

3
þ 4

9

cη/π
w̄

; ð44Þ

which can be obtained by taking the w → ∞ limit of (35)
and truncating at the first nontrivial order. As Fig. 3

demonstrates, the aHydro attractor solution is virtually
indistinguishable from the exact RTA attractor. In fact, it is
unclear to us whether the remaining differences, being a
maximum of 0.04% in the range shown, might be purely
numerical in origin. Since aHydro involves not only a
resummation in Knudsen number but also in the inverse
Reynolds number, the excellent agreement found between
the aHydro solution and the exact kinetic theory result sug-
gests that the inverse Reynolds number resummation may
also be a property of the latter. This may serve as a guide to
derive other new approaches to far-from-equilibrium hydro-
dynamics that do not rely on a perturbative treatment of both
the Knudsen and the inverse Reynolds number series, which
may be particularly useful in the search for a novel (causal
and stable) hydrodynamic theory that incorporates the
quasinormal oscillatory behavior found at strong coupling
using holography [62,82,83].
Turning to the second-order approaches, we see that the

DNMR attractor is in significantly better agreement with
the exact RTA attractor solution than MIS, as one might
expect since the MIS equations have the incorrect value of
βππ within RTA. In this plot, the NS solution is included to
emphasize that this approximation, although previously
thought of as the late-time attractor, does not coincide with
the attractor solution until one reaches very large values of
w̄ (i.e., sufficiently close to local equilibrium).
Finally, we turn to Figs. 4 and 5. In these figures we

compare the numerical solution of the aHydro and DNMR
dynamical equations along with their respective attractors
and the NS solution. For the numerical solutions (grey
dashed), we fixed an initial energy density ϵ0 at proper time
τ0 and then varied the initial condition for Π0 over a given
range. For the case of aHydro, we varied Π̄0 in the range
−2/3 ≤ Π̄0 ≤ 1/3, which is the full range of variation
allowed in aHydro corresponding to −1 < ξ0 < ∞. This
maps to initial conditions which have inverse Reynolds
numbers in the range 0 < R−1

π ≲ 2.45 and covers an

FIG. 2. The left panel shows the solution for φ, and the right panel shows the solution for the corresponding pressure ratio PL/PT .

FIG. 3. The aHydro, MIS, and DNMR attractors compared to
the attractor obtained from the exact solution to the RTA
Boltzmann equation. Note that the MIS attractor, which has
the slowest approach to the exact solution, eventually converges
to the exact attractor from above, but at larger w̄ than shown.

STRICKLAND, NORONHA, and DENICOL PHYS. REV. D 97, 036020 (2018)
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Why causal hydro works from early times
• Asymptotic behaviors of RTA kinetic theory

1. Free streaming asymptotics

2. Hydrodynamic asymptotics

5
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Why causal hydro works from early times
• Fixed point analysis

1. Logarithmic growth rates of energy density and anisotropy

5

!" # ≡ % log )
% log # , !+ # ≡ % log(-. − -0)

% log #

Causal hydro captures global features of the 
RTA kinetic theory solutions, even at early times

Blaizot-Yan 18, 19

(g0, g1) at 
fixed points

RTA kinetic theory Causal hydro (DNMR)
(2-moment truncation)

UV (free) (-2,-2) (-2.21, -2.21)
IR (free) (-1,-1) (-0.93, -0.93)
IR (hyd) (-4/3, -2) (-4/3, -2)
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Why causal hydro works from early times
• Fixed point analysis

1. Logarithmic growth rates of energy density and anisotropy

5
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Causal hydro captures global features of the 
RTA kinetic theory solutions, even at early times

Blaizot-Yan 18, 19

(g0, g1) at 
fixed points

RTA kinetic theory Causal hydro (DNMR)
(2-moment truncation)

UV (free) (-2,-2) (-2.21, -2.21)
IR (free) (-1,-1) (-0.93, -0.93)
IR (hyd) (-4/3, -2) (-4/3, -2)
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Figure 1. Comparison between the exact solution of the kinetic equation (solid lines) and the
solution of the two-moment truncation (dashed lines). Four sets of initial condition are chosen
which lead to di↵erent time evolutions of the pressure anisotropy.

emerges. As we shall discuss at length later, this reflects the emergence of the hydrodynamic

behavior. This regime sets in while the pressure anisotropy is still significant, i.e. for

PL/PT & 0.6. Note that the two-moment truncation describes accurately this regime, as

well as the pre-equlibirum regime which is very sensitive to the initial conditions. The value

PL/PT ' 0.6 is often considered as an indication of a large anisotropy. Note however that,

according to Eq. (2.22), this value translates into a smaller ratio of the first two moments,

L1/L0 ' 0.15. Since the approach to local equilibrium, or at least the isotropisation of

the system, is characterized by the decay of the non trivial moments of the distribution

function, it may not be too surprising that viscous hydrodynamics start to work when the

largest non trivial moment represents a 15% correction.

3 The free streaming regime

In this section we study the free streaming regime from the point of view of the moments

of the kinetic equation. A priori this may look as an unnecessary complication, since the

explicit solution of the free streaming kinetic equation is indeed trivial. However, in doing

so, we prepare the ground for the more complete discussion of the kinetic equation in the

presence of collisions. Besides, this study of the free streaming moments is interesting in

– 10 –

Close!



Lessons so far
1. Out-of-equilibrium behavior is characterized by hydrodynamic 

attractor even beyond the gradient expansion

2. Hydrodynamic attractor of (RTA) kinetic theory is approximated 
well by causal hydro, which only has single non-hydro mode

3. This unexpected success of causal hydro is because it shares 
the same fixed points with the (RTA) kinetic theory
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Recent works on far-from-equilibrium hydro
• Attractors and far-from-equilibrium hydro

• Lublinsky-Shuryak 07!
• Heller-Janik-Witaszczyk 12, 13, Heller-Spalinski 15, Romatschke 17, 18, Behtash-

CruzCamacho-Martinez 18, Heller-Kurkela-Spalinski-Svensson 18, Strickland-
Noronha-Denicol 18, Strickland 18, Behtash-CruzCamacho-Kamata-Martinez 19, 
Behtash-Kamata-Martinez-Shi 19, Denicol-Noronha 19 (Wed 8:40-, 15:00-),  
Jaiswal-Chattopadhyay-Jaiswal-Pal-Heinz 19 (poster NT7), Du (poster NT4)

• New ideas and applications of attractors
• Fixed points: Blaizot-Yan 18, 19, Kurkela-Wiedemann-Wu 19
• Pre-scaling: Mazeliauskas-Berges 19 (Wed 14:40-)
• Adiabatic hydrodynamics: Brewer-Yan-Yin 19 (Wed 14:20-)
• Phenomenology: Giacalone-Mazeliauskas-Schlichting 19, Kurkela-Mazeliasukas 19
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New ideas on far-from-equilibrium hydro
• Pre-scaling in overpopulated anisotropic plasma

1. QCD effective kinetic theory

2. Non-thermal fixed point
• The 1st stage of bottom up thermalization

3. Scaling behavior established earlier

!"↔$ % + !$↔$[%]

% )*, ),, - = -/(1)%3(-4(1))*, -5(1)),)

Mazeliauskas-Berges 19
(Wed 14:40-)

Pre-scaling away from non-thermal fixed 
point suggests an attractor behavior 

8

By looking at different moments n, m ¼ 0; 1;…, one
obtains a set of algebraic equations from which αðτÞ,
βðτÞ, and γðτÞ can be determined. Since the choice of
moments is not unique, one can probe different momentum
regimes and test how well (pre)scaling is realized.
The time-dependent exponents obtained from various

combinations of moments nn;m with n, m < 4 for initial
conditions with σ0 ¼ 0.1 are shown in Fig. 2, exhibiting a
remarkable overlap of the results from different moment
ratios [33]. In this case, one expects free-streaming scaling
exponents α → 0, β → 0, γ → 1 at very early times.
Accordingly, both αðτÞ and γðτÞ approach the nonthermal
fixed-point limit from above for initial conditions with
σ0 ¼ 0.1 [34]. At later times τ > 1, we fit the power laws
with constant exponents and obtain α ≈ −0.73, β ≈ −0.01,
and γ ≈ 0.29. These values are close to both the analytic
values of the BMSS and BD estimates given above and
consistent with previous lattice results within errors [10].
One clearly observes the prescaling regime, for which
different moments can be described by the common set of
time-dependent scaling exponents even before the asymp-
totic scaling is reached. However, to emphasize that the
time dependence of the exponents is not universal, we show
in Fig. 3 the results for larger initial gluon density σ0 ¼ 0.6
such that free streaming is suppressed. In this case we see
that at very early times τ < 0.03, there is no unique notion
of scaling exponents. But very quickly the results from
different sets of moments collapse again to a single curve,
much before the exponents attain their universal constant
values.
Universal scaling form of the distributions.—With the

results for exponents, we can now extract the universal
scaling form fS. We first consider rescaling with the
constant values of exponents obtained from the late-time
fit. The left panel of Fig. 4 shows the rescaled gluon
distribution τ−αg2fg as a function of p⊥ at different times τ
for pz ¼ 0 (solid lines) for initial conditions with σ0 ¼ 0.1.
After an initial period, all rescaled curves at different times
collapse to a single scaling curve.

We see that with a full collision kernel, the low-
momentum part of the distribution function develops a
∼1=pT behavior. In contrast, only elastic processes are
not efficient in developing these thermallike features of a
low-momentum bath (grey dashed curves) [35]. The softer-
momentum region is efficiently populated by the collinear
radiation processes, and we observe excellent scaling
properties also in that regime where particle-number-
changing processes are essential.
Prescaling states that the very same distribution function

fS can be extracted at much earlier times, before the scaling
exponents take on their universal values. To verify this, we
rescale the distribution function according to Eq. (2) using
the time-dependent exponents from Fig. 2 and relation (6).
As shown in the right panel of Fig. 4, the rescaled distribution
collapses to a single scaling curve even at early times. As can
be seen from Fig. 1, the time-dependent exponents of Fig. 2
along with the universal scaling form fS can be established
already at a timewhere the bulk quantityPL=PT still appears
to be deep in the free-streaming regime.
A corresponding analysis can be done for the longi-

tudinal momentum dependence. Figure 5 displays the
rescaled distribution as a function of τγpz and of τγðτÞpz
at different times, and we neglect the nearly vanishing
transverse momentum exponent β. Again, a much earlier
collapse of the curves is observed if time-dependent
exponents are used.
Like for the case with small-angle scattering approxima-

tion [32], we find that the quarks exhibit similar scaling
behavior as for gluons at late times for the part of the
distribution function not bounded by the Pauli exclusion
principle. In Fig. 6, we show the fermion distribution along
the longitudinal momenta and p⊥=Qs ¼ 1. Although the
time-dependent exponents capture most of the longitudinal
squeeze of the distribution function, the scaling form of the
fermion distribution function is not established as well as for
gluons. Because gluons are highly occupied, the quark
contribution to the total particle number is small at these
times. Therefore, the background evolution of gluons does
not changenoticeably in thepresence of quarks in this regime.

FIG. 2. Time-dependent scaling exponents from multiple sets
of integral moments for gluon density parameter σ0 ¼ 0.1.

FIG. 3. The same as Fig. 2, but for σ0 ¼ 0.6.

PHYSICAL REVIEW LETTERS 122, 122301 (2019)
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scaling exponents at 
non-thermal fixed point

pre-scaling



New ideas on far-from-equilibrium hydro
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# → (

)
Brewer-Yan-Yin 19
(Wed 14:20-)

• Adiabatic hydrodynamics
1. Trace the slowest configuration

~Quantum mechanics with energy gap

2. RTA kinetic theory
• Free streaming vs. relaxation

8

*
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, 2 ≈ ,5;7(+) slowest configuration

Instantaneous ground state effectively 
selects the attractor solution



Application of hydrodynamic attractor
• Energy attractor

1. Insensitive to models by scaling
with equilibrium relaxation time

2. Relates initial energy density to
late-time energy & entropy densities

9

Dominant entropy production is 
estimated by the attractor
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Application of hydrodynamic attractor
• How much has (pre-)QGP worked?

1. Using entropy-multiplicity relation

2. Longitudinal work estimated
• Observed energy per rapidity
• Multiplicity à initial energy density

9

!" #$# ~ &' ( )*+
,

-./0
( 1233

-./0 ( 4567
894+

:/0
Longitudinal work > 0

Viscosity can be constrained 
by using independent data

Giacalone-Mazeliauskas-Schlichting 19



Application of hydrodynamic attractor
• More formulae

1. Hydrodynamization time

2. Chemical equilibration time

9
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Application of hydrodynamic attractor
• More formulae

1. Hydrodynamization time

2. Chemical equilibration time
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Figure 1 | pT-di�erential yields of K0
S , ⇤+⇤, ⌅� +⌅

+ and ⌦� +⌦
+

measured in |y|<0.5. The results are shown for a selection of event
classes, indicated by roman numbers in brackets, with decreasing
multiplicity. The error bars show the statistical uncertainty, whereas the
empty boxes show the total systematic uncertainty. The data are scaled by
di�erent factors to improve the visibility. The dashed curves represent
Tsallis–Lévy fits to each individual distribution to extract integrated yields.
The indicated uncertainties all represent standard deviations.

hdNch/d⌘i. The mean pseudorapidity densities of primary charged
particles hdNch/d⌘i are measured at midrapidity, |⌘|<0.5. The
pT spectra become harder as the multiplicity increases, with the
hardening being more pronounced for higher-mass particles. A
similar observation was reported for p–Pb collisions10, where
this and several other features common with Pb–Pb collisions
are consistent with the appearance of collective behaviour at high
multiplicity8,11,19–23. In heavy-ion collisions these observations are
successfully described by models based on relativistic hydrody-
namics. In this framework, the pT distributions are determined by
particle emission from a collectively expanding thermal source28.
The blast-wave model29 is employed to analyse the spectral shapes
of K 0

S , ⇤ and ⌅ in the common highest multiplicity class (class
I). A simultaneous fit to all particles is performed following the
approach discussed in ref. 10 in the pT ranges 0–1.5, 0.6–2.9 and
0.6–2.9GeV/c, for K 0

S ,⇤ and ⌅ , respectively. The best fit describes
the data to better than 5% in the respective fit ranges, consistent
with particle production from a thermal source at temperature Tfo
expanding with a common transverse velocity h�Ti. The resulting
parameters, Tfo =163±10MeV and h�Ti = 0.49 ± 0.02, are
remarkably similar to the ones obtained in p–Pb collisions for an
event class with comparable hdNch/d⌘i (ref. 10).

The pT-integrated yields are computed from the data in the
measured ranges and using extrapolations to the unmeasured
regions. To extrapolate to the unmeasured region, the data were
fitted with a Tsallis–Lévy10 parametrization, which gives the best
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Figure 2 | pT-integrated yield ratios to pions (⇡+ +⇡�) as a function of
hdNch/d⌘imeasured in |y|<0.5. The error bars show the statistical
uncertainty, whereas the empty and dark-shaded boxes show the total
systematic uncertainty and the contribution uncorrelated across
multiplicity bins, respectively. The values are compared to calculations from
MC models30–32 and to results obtained in p–Pb and Pb–Pb collisions at the
LHC6,10,11. For Pb–Pb results the ratio 2⇤/(⇡+ +⇡�) is shown. The
indicated uncertainties all represent standard deviations.

description of the individual spectra for all particles and all
event classes over the full pT range (Fig. 1). Several other fit
functions (Boltzmann, mT-exponential, pT-exponential, blast wave,
Fermi–Dirac, Bose–Einstein) are employed to estimate the cor-
responding systematic uncertainties. The fraction of the extrapo-
lated yield for the highest(lowest) multiplicity event class is about
10(25)%, 16(36)%, 27(47)% for ⇤,⌅ and ⌦ , respectively, and is
negligible for K 0

S . The uncertainty on the extrapolation amounts
to about 2(6)%, 3(10)%, 4(13)% of the total yield for ⇤, ⌅ and
⌦ , respectively, and it is negligible for K 0

S . The total systematic
uncertainty on the pT-integrated yields amounts to 5(9)%, 7(12)%,
6(14)% and 9(18)% for K 0

S , ⇤,⌅ and ⌦ , respectively. A significant
fraction of this uncertainty is common to all multiplicity classes and
it is estimated to be about 5%, 6%, 6% and 9% for K 0

S ,⇤,⌅ and ⌦ ,
respectively. In Fig. 2, the ratios of the yields of K 0

S , ⇤,⌅ and ⌦ to
the pion (⇡+ +⇡�) yield as a function of hdNch/d⌘i are compared
to p–Pb and Pb–Pb results at the LHC6,10,11. A significant enhance-
ment of strange to non-strange hadron production is observed
with increasing particle multiplicity in pp collisions. The behaviour
observed in pp collisions resembles that of p–Pb collisions at a
slightly lower centre-of-mass energy11, in terms of both the values
of the ratios and their evolution with multiplicity. As no significant
dependence on the centre-of-mass energy is observed at the LHC
for inclusive inelastic collisions, the origin of strangeness production
in hadronic collisions is apparently driven by the characteristics
of the final state rather than by the collision system or energy. At
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2. Hydrodynamic Fluctuations



Fate of non-hydro modes
• After enough time has passed

”non-hydro modes”
(fast modes)

“Non-hydro modes” are almost equilibrated
= linear response + noise

10

!"# = !%&"# + !(%)"# + *+,%)-"#

Landau-Lifshitz
Kapusta-Mueller-Stephanov 12

(fluctuation-dissipation theorem)



Fate of non-hydro modes
• Hydrodynamic fluctuations are excited

Kinetic regime k* = relaxation and expansion balance
Hydro-kinetic theory = dynamics of particle-like modes at k*

10

!"# = !%&"# + !(%)"# + *+,%)-"#

hydro fluctuations
(particle-like)

Landau-Lifshitz
Kapusta-Mueller-Stephanov 12

”non-hydro modes”
(fast modes)

Akamatsu-Mazeliauskas-Teaney 17, 18
See also Martinez-Schafer 18, 19



New development in hydro-kinetic theory
• Hydro fluctuations in general background

1. Careful consideration of equal-time and rest frames
• Confluent correlator / derivatives

2. Phonons as particles

3. No particle interpretation for diffusive modes

11

local flow configurations

accelerationrotation

bulkshear

phonon

An-Basar-Stephanov-Yee 19
(Wed 9:20-, Tue 14:00-)

Fluctuating hydro = hydro + phonon gas + … 
A new simulation method?
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Simulating fluctuating hydrodynamics
• Rapidity decorrelation

1. Initial longitudinal fluctuations
• Decay of hadronic strings using PYTHIA

2. Thermal fluctuations
• Hydrodynamics + noise (smeared by !)
• No free parameter (except for !)

12

initial fluctuations
thermal fluctuations

Sakai-Murase-Hirano
(Tue 9:40-)

Thermal fluctuations essential to 
study initial longitudinal fluctuations

"#
−"#% "#% "#& : reference

correlation?



Modified fluctuation-dissipation relation
• Fluctuations in causal hydro

1. Noise in constitutive relation

2. Distribution of produced entropy
• Fluctuation Theorem applied to Bjorken expansion

13

1 + #$% & = &() + *
* + *(+′) = /01(+ − +′) 2 + #$% ln 6789 − #$:

“non-instantaneous” noise

Entropy production rate

Distribution
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Murase 19 (Poster CD24)
See also Hirano-Kurita-Murase 19
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Modified fluctuation-dissipation relation
• Fluctuations in causal hydro

3. Test of Fluctuation Theorem

13

Conventional FDR

FT violated!

Modified FDR

FT (almost) satisfied!

Modified FDR necessary for correct distribution of entropy production

Murase 19 (Poster CD24)
See also Hirano-Kurita-Murase 19
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Summary



Overall picture I have as of 19/11/7

Which fixed point property 
are we observing?
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Chaotic branch?
Plasma instability?
Bottom-up?
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Why causal hydro works from early times
• Fixed point analysis

1. Logarithmic growth rates of
energy density and anisotropy

1

!" # ≡ % log )
% log #

!* # ≡ % log(,- − ,/)
% log #

J.-P. Blaizot, L. Yan / Physics Letters B 780 (2018) 283–286 285

4. The hydrodynamic fixed point

We know from our previous study [12] that, at late times, 
Ln(τ ) admits the following expansion, analogous to a gradient ex-
pansion1

Ln(τ ) = 1
τn

∞∑

m=0

α(m)
n

τm . (9)

The coefficients in Eq. (9) are nothing but transport coefficients, 
except for the first moment, equal to the energy density, i.e., 
α(m)

0 = εδm0. The behavior of ε(τ ) at large time is obtained from 
Eq. (3), ignoring the contribution of L1. Since a0 = 4/3, this be-
havior is that of ideal hydrodynamics, ε(τ ) ∼ τ−4/3, and hence 
T (τ ) ∼ τ−1/3. The leading and sub-leading transport coefficients 
in Eq. (9) can be determined analytically. To do so, we return to 
Eq. (8) and note that a cancellation of the relaxation term has 
to occur in order to eliminate the exponential decaying contri-
butions to the moments. This cancellation determines the leading 
order coefficient, viz. α(0)

n = (−τR)nε
∏n

i=1 bi . In particular, α(0)
1 =

−b1τRε = −2η, with η the shear viscosity. In a conformal invari-
ant setting [14], we allow τR to depend on the temperature, with 
τR T (τ ) kept constant.2 Then, one gets α(0)

n ∼ τ−(4−n)/3 which im-
plies that in leading order, Ln(τ ) ∼ τ−(4+2n)/3. This defines the 
hydrodynamic fixed point, gn(τ ) = −(4 + 2n)/3.3 The sub-leading 
coefficients in Eq. (9) are then fixed by imposing this asymptotic 
power law, which yields

α(1)
n

α(0)
n

= τRbn

[
1
bn

(
4 + 2n

3
− an

)
− α(1)

n−1

α(0)
n

]

. (10)

The first few coefficients reproduce the values of known trans-
port coefficients [12,15], for instance α(0)

2 = 64
105 ετ 2

R = 4
3 (λ1 +ητπ ), 

α(1)
1 = − 32

315 ετ 2
R = 4

3 (λ1 −ητπ ), with λ1 and τπ as defined in [14].

5. The attractor

One may define an attractor solution as the particular solution 
of Eqs. (3) which, at short time, coincides with the free streaming 
fixed point gn = −1, and at large time goes over to the hydro-
dynamic fixed point. It can be determined numerically, by solving 
Eqs. (3) with initial conditions specified by the constants (6). We 
have checked that g0 obtained in this way is consistent with what 
was found by other methods in Ref. [3,4]. The solution, obtained 
by truncating Eqs. (3) at n < 20, is displayed in Fig. 2 for the first 
few gn(τ ). The universal character of the curves is worth empha-
sizing. All the gn ’s behave in the same way, interpolating between 
the two fixed point gn ≈ −14 and gn = −(4 + 2n)/3, the transition 
occurring when τ ∼ τR .

6. Hydrodynamics

At this point, we note that the truncations of the equations 
(3) for the moments are closely related to successive viscous cor-
rections to hydrodynamics. We have already seen that the lowest 

1 For Bjorken flow, the gradient expansion coincides with an expansion in powers 
of τR/τ , which may also be viewed as an expansion in Knudsen number.

2 The constant is given by τR T (τ ) = 5η/s, with the entropy density given by s =
4ε/(3T ).

3 In the conformal invariant setting, this result could also be obtained from a sim-
ple dimensional analysis. For a time-independent relaxation time, the hydrodynamic 
fixed point is instead gn(τ ) = −(4 + 3n)/3.

4 Because of the truncation at n < 20, the fixed point does not lie exactly at −1, 
but at −1.00294.

Fig. 2. Attractor solutions (black solid lines) to the L-moment equations cut at n <
20, in terms of g0, g1 and g2. Dotted lines correspond to the hydrodynamic fixed 
point. Solutions with random initial conditions are shown in grey.

order truncation, i.e., with only L0 non vanishing, is identical to 
ideal hydrodynamics. The truncation at order n = 1 yields two cou-
pled equations that can be cast in the form

∂τ ε = −4
3

ε

τ
+ *

τ
, ∂τ * = 4

3
η

ττR
− a1

*

τ
− *

τR
, (11)

where * ≡ −c0L1, and we used the leading order relation 
4η/(3ττR) = c0b1ε/τ . These are just the second order viscous 
hydrodynamic equations, in the version of Ref. [16] with βππ =
a1 = 38/21. The first order viscous hydrodynamics uses the solu-
tion of the second equation (11) for small τR , viz. * & 4η/(3τ ) =
(16/45)ε(τR/τ ). The much studied (lack of) convergence of the 
hydrodynamic gradient expansion in the context of Bjorken flow 
concerns the series of the coefficients α(n)

1 in Eq. (9) for L1 ∼ *, 
as can be deduced from the solution of the coupled equations (11)
at large time [5].

Taking higher moments into account is tantamount to includ-
ing higher order viscous corrections. For instance, the lowest order 
contribution of L2 to the equation for L1 reads

c0c1L2

τ
= c1b2

c0b1ε

*2

τ
(12)

where we have used Eqs. (9) and (10) to write L2 = α2(0)/τ 2 =
α(0)

2 /(α(0)
1 c0)

2*2. It can be verified that the correction (12) coin-
cides with the third order viscous correction derived in Ref. [17]. 
Obviously, it would be straightforward to obtain in this way higher 
order viscous corrections, if needed. Note that since bn ∼ n at large 
n, α(0)

n ∝ n!, and the series of the α(0)
n suffers from the same lack 

of convergence as that of the α(n)
1 determining the viscous part of 

the energy momentum tensor.

7. Renormalization of η/s

Alternatively, the effects of the higher moments can be treated 
as a renormalization of the viscosity entering the equations for L0
and L1. To see that, rewrite the equation for L1 as

∂τ L1 = − 1
τ

(a1L1 + b1L0) −
[

1 + c1τR

τ

L2

L1

]
L1

τR
, (13)

Blaizot-Yan 18, 19

Flow and fixed points in the space of gn



Why causal hydro works from early times
• Fixed point analysis

1. Logarithmic growth rates of energy density and anisotropy

2. Free-streaming asymptotics of causal hydro

2

!" # ≡ % log )
% log # , !+ # ≡ % log(-. − -0)

% log #

Blaizot-Yan 18, 19

# %%#
)

-. − -0 = −4/3 −2/3
−8/15 −38/21

)
-. − -0 eigenvalues à exponents = g0 and g1

(g0, g1) at 
fixed points

RTA kinetic theory Causal hydro (DNMR)
(2-moment truncation)

UV (free) (-2,-2) (-2.21, -2.21)
IR (free) (-1,-1) (-0.93, -0.93)
IR (hyd) (-4/3, -2) (-4/3, -2)

Enough to just solve 
2 x 2 matrix problem



Effective viscosity
• To improve causal hydro

1. Use attractor solution for the truncated order

2. Effective relaxation time and viscosity

3
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Fig. 3. Renormalization constant Zη/s as a function of τ/τR . The leading order cor-
responds to Eq. (14), the next-to-leading order include the correction due to g3(τ ).

with Z−1
η/s ≡

[
1 + c1τR

τ
L2
L1

]
. The dimensionless ratio L2/L1 is an-

alytically related to the attractor g2(τ ), the leading order result 
being

L2

L1
= − b2

a2 + τ/τR + g2(τ )
. (14)

Sub-leading contributions involving higher gn ’s can be obtained 
iteratively. The quantity Zη/s in Eq. (13) then defines a multiplica-
tive renormalization of η/s (or equivalently of τR : τR → Zη/sτR ), 
whose variation with τR is displayed in Fig. 3. Since succes-
sive corrections alternate in sign, the grey band provides an es-
timate of the error. At large times, corresponding to a system 
in local thermal equilibrium, Zη/s is close to unity. For systems 
far-from-equilibrium, Zη/s tends to vanish. Thus, in systems out-
of-equilibrium, higher order viscous corrections effectively reduce 
the value of η/s entering the second order viscous hydrodynamic 
equations, an effect first pointed out by Lublinsky and Shuryak 
[18]. As can be seen on Fig. 1 (grey dashed line), this simple renor-
malization brings the solution of the lowest non trivial truncation 
quite close to the exact solution. That is, with this correction, sec-
ond order viscous hydrodynamics reproduces accurately the exact 
solution of the kinetic theory.

In summary, we have seen that it is possible for viscous hydro-
dynamics to describe accurately the evolution of boost invariant 

plasmas, even in regimes where the usual conditions of applicabil-
ity of hydrodynamics are not satisfied. This is because the viscous 
hydrodynamic equations can be mapped into equations for mo-
ments of the momentum distribution that account exactly for the 
underlying kinetic theory. Although the present discussion relies 
on specific properties of Bjorken flow and the use of a simplified 
kinetic equation, we expect some general features to be robust, 
such as the existence of the free streaming and the hydrodynamic 
fixed points,5 joined by an attractor solution, or the renormal-
ization of the effective viscosity. Clearly these results may have 
impact on the interpretation of heavy ion data and deserve fur-
ther study.
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Far-from-equilibrium effective viscosity in 
Bjorken expansion < equilibrium viscosity

Blaizot-Yan 18, 19
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Sound Modes Transverse modes

Out-of-equilibrium

• Hydro fluctuations in Bjorken expansion
1. Kinetic regime: relaxation vs. expansion

2. Hydro-kinetic equation

Hydro-kinetic theory
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Hydro-kinetic theory
• Hydro fluctuations in Bjorken expansion

3. Pressure from kinetic regime
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Sound Modes Transverse modes

Long-tim
e tail

Renormalization of 
pressure and viscosity

~2

Long-time tail from out-of-equilibrium fluctuations
and renormalization from (almost) equilibrated fluctuations

Δ!""~!3∗*~
!

4678,
*/1

long time tail

Decays due to shrinking 
phase space volume of k*
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