Heavy Quark production and energy loss: Experiments

Jing Wang

- Quark Matter 2019
- The XXVIIIth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions 3-9 November 2019 Wuhan, China

Charm quark/粲夸克

Particle zoo Best-selling quark!

- Produced in **initial hard** scatterings (< 0.1 fm)
 - \rightarrow (m_c, m_b \gg T_{QGP})
 - Bring info of early stage
- Production cross section calculable with pQCD
 - \rightarrow (m_c, m_b \gg Λ_{QCD})
 - ➡ Slow "hard probes"

- **Energy loss** Hadronization • Possible to probe the • strong and short lived ➡ pQCD: collisional + radiative Keep identity AdS/CFT: drag force **EM-field** ➡ Charm number Mass hierarchy: dead cone effect Different response for conservation **Diffusion: Brownian motion** opposite charges • Spatial diffusion coefficient D_s

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

4

Constrain nPDF

- Tension between data and nPDF model predictions?

• D meson in pPb contributes to constraining gluon nPDF down to $x \sim 10^{-5}$

Probing the strong initial EM-field

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

• Δv_1 slope (d Δv_1 /d η): slope(D⁰) ~ 10⁻¹ » slope (h[±]) ~ 10⁻⁴

7

Probing the strong initial EM-field

Probing initial fluctuations: heavy flavor v₃

C. Bernardes, 5 Nov, 15:20

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

S. Lim, 5 Nov, 9:00

Take-home note (I): Initial stages

New knowledge

predictions $\sqrt{d\Delta v 1/d\eta}$ to detect strong initial EM-field: Different slope signs between RHIC & LHC with large uncertainties \checkmark Precise HF v₃ to probe initial fluctuations \Rightarrow v₃(h[±]) > v₃(charm) > v₃(beauty) \approx 0

- \checkmark D meson constrains nPDF down to x~10⁻⁵ ✓ Tension between D⁰ R_{FB} and nPDF model
 - \Rightarrow slope(D⁰) \gg slope(h[±]) observed in ALICE

Energy loss in medium: Open *charm* **R**_{AA}

G.M. Innocenti, 5 Nov, 11:00

- Down to p_T=0 at LHC!
- Strong constraints to theories Interplay of radial flow, recombination, shadowing etc.

Energy loss in medium: Open *charm* **R**_{AA}

G.M. Innocenti, 5 Nov, 11:00

Difference trend between LHC and RHIC?

Energy loss in medium: Open beauty RAA

M. Kelsey, 5 Nov, 17:40 D. Thomas, 5 Nov, 12:00 • New players in the game!

Energy loss in medium: Flavor hierarchy

• Low-p_T:

- \Rightarrow R_{AA}(beauty) ? R_{AA}(charm) > R_{AA}(light)
- Radial flow? shadowing? etc
- Intermediate p_T:
 - \Rightarrow R_{AA}(beauty) > R_{AA}(charm) \approx R_{AA}(light)
 - Dead cone effect?

14

One source of flavor hierarchy: Dead cone effect

Dead cone effect is suppressed inside $\theta < m/E$

D⁰-tagged jets / Inclusive jets

Take-home note (II): Energy loss

New knowledge

 \checkmark D meson R_{AA} measured down to p_T=0 at LHC → Hint of different trend RHIC & LHC \checkmark Intermediate p_T: \Rightarrow R_{AA}(beauty) > R_{AA}(charm) \approx R_{AA}(light) √Low p_T: \Rightarrow R_{AA}(charm) > R_{AA}(light) ✓ Dead cone effect directly observed using Dtagged jets in pp

Open *charm* **collective** flow in AA

ATLAS-CONF-2019-053 CMS-PAS-HIN-19-008

- High-precision
- **Prominent flow structure**
- Good agreement among measurements $\rightarrow c \rightarrow \mu$ shift a bit to low-p_T: daughter μ
- $v_2(h^{\pm}) > v_2(\text{open charm})$

S. Lim, 5 Nov, 9:00 C. Bernardes, 5 Nov, 15:20

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

17

Open *beauty* **collective** flow in AA

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

ATLAS-CONF-2019-053 CMS-PAS-HIN-19-008

 Non-zero open beauty v₂ in AA collisions at RHIC (~3.4 σ) and LHC!

> S. Lim, 5 Nov, 9:00 M. Kelsey, 5 Nov, 17:40 C. Bernardes, 5 Nov, 15:20

Open *beauty* **collective** flow in AA

ATLAS-CONF-2019-053 CMS-PAS-HIN-19-008

- v₂(h[±])
- v₂(open charm)
- V
- v₂(hidden charm)

- v₂(open beauty)
- v₂(hidden beauty)

S. Lim, 5 Nov, 9:00 C. Bernardes, 5 Nov, 15:20

Collective phenomena in small system (pA)

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

A.A. Baty, 5 Nov, 08:40

Collective phenomena in small system (pA)

pPb pPb 186 nb⁻¹ (8.16 TeV) **CMS** *Preliminary* ly_{lab}l<1 **CMS-PAS-HIN-19-009** 0.3 K_{S}^{0} Prompt D⁰ D⁰ from b hadrons 1.2</br> 0.2 $v_2^{sub}{2}$ Prompt J/ψ J/ψ 0.1 $185 \le N_{trk}^{offline} < 250$ 2 6 3 5 0 p_⊤ (GeV)

PbPb

• $v_2(D^0) \approx v_2(J/\psi)$ in pPb: final state interactions cannot explain A.A. Baty, 5 Nov, 08:40

Collective phenomena in small system (pp)

Take-home note (III): Collectivity

New knowledge

 \checkmark Non-zero open beauty v₂ in heavy-ion collisions at both RHIC and LHC \checkmark Flavor hierarchy in heavy-ion collisions: \Rightarrow v₂(light) > v₂(charm) > v₂ (beauty) \checkmark pPb: v₂(J/ψ) ≈ v₂(D⁰) ✓ High-multiplicity pp: \rightarrow Non-zero v₂ (open charm) \rightarrow v₂ (open beauty) \approx 0 Similar behavior with pPb

Hadronization in bulk: strangeness

Hint of strange heavy flavor hadron enhanced in heavy-ion collisions

G.M. Innocenti, 5 Nov, 11:00

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

Z. Shi, 6 Nov, 16:20

Hadronization in bulk: Λ_c/D^o ratio in AA

G.M. Innocenti, 5 Nov, 11:00

ALI-PREL-321682

G.M. Innocenti, 5 Nov, 11:00

ALI-PREL-321682

Good constraints to require describing RHIC and LHC simultaneously

LHC vs. RHIC

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

G.M. Innocenti, 5 Nov, 11:00

- ALICE and CMS agree in pp and PbPb
- LHC: mildly enhanced in PbPb w.r.t. pp and peak at ~4-6 GeV/c

arXiv:1906.03322 arXiv:1910.1462

LHC vs. RHIC

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

G.M. Innocenti, 5 Nov, 11:00

- ALICE and CMS agree in pp and PbPb
- LHC: mildly enhanced in PbPb w.r.t. pp and peak at ~4-6 GeV/c
- RHIC: stronger enhanced?

arXiv:1906.03322 arXiv:1910.1462

LHC vs. RHIC

G.M. Innocenti, 5 Nov, 11:00

 RHIC has stronger dependence on N_{part} than LHC?

> arXiv:1906.03322 arXiv:1910.1462

LHC vs. RHIC

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

 RHIC has stronger dependence on N_{part} than LHC?

Hadronization in jet ("recombine"): Λ_c/D^o ratio in pp

ALI-PREL-336442

• high-mult > low-mult at \sim 4-6 GeV/c

G.M. Innocenti, 5 Nov, 11:00

Is there/where is a saturation?

More info of hadronization: Λ_c/D^0 ratio in pPb

ALI-PREL-314616

• Λ_c/D^0 ratio: nPDF effect almost cancelled

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

New since QM18

• Λ_c/D^0 (mid-rapidity) > Λ_c/D^0 (FB) \Rightarrow Tension or feature?

Take-home note (IV): Hadronization

New knowledge

 $\sqrt{\Lambda_c/D^0}$ enhanced in HI $\sqrt{\Lambda_c/D^0}$ increases vs. multiplicity in pp $\sqrt{\Lambda_c/D^0}$ tension between mid-rapidity and forward/backward in pPb

- ✓ Hint of strange HF hadron enhanced in HI

Summary: Note of take-home notes

Repeat.

✓ Tension between D⁰ R_{FB} and nPDF model predictions $\sqrt{\text{Zero } v_3(\text{open beauty})}$ in heavy-ion collisions $\checkmark D^0 R_{AA}$ down to p_=0 ✓ Direct observation of dead cone effect $\sqrt{\text{Non-zero } v_2(\text{open beauty})}$ in heavy-ion collisions $\sqrt{\text{Non-zero } v_2(\text{open charm})}$ in pp $\sqrt{\Lambda_c/D^0}$ increases vs. multiplicity in pp

Jing Wang (MIT), Open HF: Experiments, QM 2019 (Wuhan)

Back-up

Thanks for your attention!

