

Electromagnetic & Weak Probes: experimental overview

Frank Geurts

Probing Strongly Interacting Matter

- ➤ General appeal of EM/weak probes:
 - produced in by various ways throughout the system's evolution
 - colorless objects ∴ no coupling to strongly interacting matter

- W± and Z production
- prompt photons
- Soft Processes
 - di-leptons
 - thermal photons

- >Access to initial conditions, (early) system evolution
 - tag jets
 - measure effective temperature
 - test chiral symmetry restoration
 - test QED

Experimental Landscape

- Facilities and experiments spanning
 - ~4 orders of magnitude in beam energies
- Many collisions systems
 - p+p, p+Au, p+Pb, ..., Cu+Cu, ..., In+In, ..., Au+Au, Pb+Pb
- Centrality/multiplicity ranges
 from UPC to central A+A, and high-multiplicity p+p
- Experimental access from direct and virtual photons, to massive vector bosons

Weak Probes: Constraining Nuclear PDFs

- PDFs give probability at a given scale Q^2 for finding a parton with momentum fraction x within proton
- nPDFs reflect parton distributions in bound nucleus

Constraining Nuclear PDFs

>nPDFs need more experimental datasets

QM2019 - Wuhan

© ParticleZoo.net

Recent results from p+Pb (1)

[CMS, p+Pb \sqrt{s} =8.16 TeV]

- R_{FR} of W bosons
 - 5x more statistics than 5.02TeV
 - going) to forward region (Pb-compare backward region (Pb-
- Drell-Yan results for Vs=8.16 TeV
 - work in progress
 - $10.5 < M_{DY} < 20 \text{ GeV/c}^2$
 - allow for wider range in x

[ATLAS, p+Pb \sqrt{s} =8.16 TeV]

- Prompt photons in p+Pb
 - instead of R_{FB} use

$$R_{p\text{Pb}} = (d\sigma^{p+\text{Pb}\to\gamma+X}/dE_{\text{T}}^{\gamma})/(A \cdot d\sigma^{pp\to\gamma+X}/dE_{\text{T}}^{\gamma})_{0.8}$$

> small affects from nPDF confirmed for CT14+EPPS16 and nCTEQ15

- ✓ nPDFs favored over CT14 PDF
- ✓ consistent with published results from Z boson at 5.02TeV
- > experimental uncertainties smaller than model uncertainties

CMS

Recent results from p+Pb and Pb+Pb (2)

[LHCb, p+Pb \sqrt{s} =8.16 TeV]

- Z bosons
 - 20x more statistics than results from 5 TeV
 - compatible with 5 TeV
- ➤ Measured R_{FB} compatible with EPPS16 and CTEQ15 predictions
 - $R_{FB}^{2.5 < |y| < 4.0} = 1.28 \pm 0.14 (stat) \pm 0.14 (sys) \pm 0.05 (lumi)$
 - NNPDF3.1: 1.59±0.01(num) ±0.05(PDF)
 - NNPDF3.1+EPPS16: 1.45±0.01(num) ±0.27(PDF)
 - NNPDF3.1+nCTEQ15: 1.44±0.01(num) ±0.20(PDF)

[ALICE, Pb+Pb $\sqrt{s_{NN}}$ =5.02 TeV]

- Z bosons in Pb+Pb
 - improved statistical precision
- > in agreement with CT14+EPPS16

Direct Photons

status updates on a number of analyses

p+p at Vs=13TeV [ALICE]

Ran Xu, poster #399

- measuring isolated direct photons out to very large p_T ~ 200 GeV/c
- p+p and p+Au at Vs=200GeV [PHENIX]

Gabor David #755 & Zhandong Sun #632

- includes re-analysis of π^0 in order to test applicability of Glauber model to $p_{\tau}^{\sim}17 GeV/c$
- Pb+Pb at √s_{NN}=5.02TeV [ALICE]

Daiki Sekihata #315

- virtual direct photons from the 2018 high statistics run
- 9x more central data

Direct Photon Puzzle

- Large yields
 - suggestive of large T
 - early stage
- Large flow
 - collective flow needs to build up
 - late stage
- Challenge to theoretically reconcile 10-5
- STAR: no large yields
- ALICE: large uncertainties in Pb+Pb
 - ∴ puzzle is not significant at √s_{NN}=2.76TeV
- \triangleright Improved quality by ALICE on η/π^0

Mike Sas, talk #247

- $> \pi^0$ down to p_T=0.4GeV/c
- \triangleright n down to p_T=0.8GeV/c
- ❖ New data from PHENIX ...

New Results on R_v in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

➤ New measurements from PHENIX

- 2014 data set (red symbols)
- based external conversion, 10x statistics
- double tagging ratio to reduce systematics:

$$R_{\gamma}(p_T) = \left(\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^0}}\right)_{data} / \left(\frac{\gamma^{hadron}}{\gamma^{\pi^0}}\right)_{sim}$$

- consistent with published results from
 - conversion method (blue, 2007+2010)
 - virtual-γ method (purple, 2004+2005)
 - calorimeter method (green, 2004)

Wenqing Fan, talk #623

Direct Photon Yields and Scaling

- Clear enhancement below 3 GeV/c² in central
 - persists in semi-peripheral
- At high p_T consistent with N_{coll}-scaled p+p result
- Consistent with observed scaling behavior

- STAR data appears to show similar scaling
 - but at lower rates
- ➤ Look into including BES-2 data from STAR?

Dilepton Measurements

New results over a wide range of energies

- ALICE
 - p+p, p+Pb, and Pb+Pb at $\sqrt{s_{NN}}$ = 5.02TeV
 - p+p at vs= 13TeV (low B-field)
- STAR
 - Au+Au at $\sqrt{s_{NN}} = 27, 54$, and 200 GeV
- HADES
 - Au+Au at √s_{NN}= 2.4GeV
 - Ag+Ag at √s_{NN}= 2.6GeV
 - $\pi+p \rightarrow e^+e^-n$ at $\sqrt{s_{NN}}=1.49$ GeV

HADES: Thermal Dielectrons at √s_{NN} = 2.42GeV

- Strong broadening of in-medium ρ spectral function
- Enable measurement of fireball temperature

$$\langle T_{\text{fireball}} \rangle = 72 \pm 2 \text{ MeV}$$

- > Thermal rates work at low energies
 - folded over coarse-grained transport models medium evolution
- Supports baryon-driven medium effects at SPS and RHIC (LHC)

New differentials with sensitivity to model details

Szymon Harabasz, talk #765

STAR e^+e^- : from $\sqrt{s_{NN}} = 27, 54$, and 200 GeV

New high-statistics data sets: 10x more data

- > constrain cocktail by direct ω and φ measurements
- > allow for multi-differentials
- > enable virtual direct y measurements

STAR's large Run-14 200GeV includes HFT

- increase in conversion background
- use decay topology to increase sensitivity to the thermal radiation in the IMR

next: apply to Run-16 200GeV dataset

Florian Seck, talk #287 Zhen Wang, poster #329 Zaochen Ye, poster #387

➤ a preview of expected precision for BES-2 energies $\sqrt{s_{NN}} = 7.7 - 19.6$ GeV

ALICE e^+e^- : p+p, p+Pb at $\sqrt{s_{NN}} = 5.02 \text{TeV}$

K.Th. 2019

- New results for p+p and p+Pb
 - 2016 data set
- Extract $d\sigma_{c\bar{c}}/dy$ and $d\sigma_{b\bar{b}}/dy$
 - consistent with HF cross sections

ALICE e^+e^- : Pb+Pb at $\sqrt{s_{NN}} = 5.02 \text{TeV}$

> hint of LMR enhancement

- Suppression below IMR vacuum baseline
- Complex interplay between initial and final state (energy loss) effects

Can we disentangle thermal radiation from HF sources?

> topological separation ...

ALICE: soft dielectrons in 13TeV p+p

First reported by the Axial Field Spectrometer collaboration

at ISR in p+p@63GeV

ALICE:

- low B-field p+p data (2018)
 - ➤ low-p_T reach to 75MeV/c for electrons
- new parametrization of η meson

- > consistently over cocktail in η-mass range and p_{T.ee}<0.4GeV/c
- consistent with cocktail for
 - low p_T π⁰
 - higher p_T η
- linear scaling with multiplicity (?)

Photo-production with nuclear overlap

X (N. 2017

Coherent γ-N and γ-γ interactions conventionally studied in UPC interactions.

Low p_T dilepton excess in hadronic heavy ion collisions?

- STAR: e⁺e⁻ excess in Au+Au and U+U at √s_{NN}=200GeV
 - investigating low- $p_T \mu^+ \mu^-$ for high $M_{\mu\mu}$ Zhen Liu, poster#425
- ATLAS: $\mu^+\mu^-$ in Pb+Pb at $\sqrt{s_{NN}}=5.02$ TeV
 - 2015 data published PRL 121 (2018) 212301
 - > new measurement combines 2015+2018 data
- ALICE: e⁺e⁻ excess in Pb+Pb at √s_{NN}=5.02TeV
 - \geq 3 σ excess in IMR for 70-90% centrality class

Dielectrons to Map the \overrightarrow{B} Field

 Birefringence of the QED vacuum observed for the first time

in UPC $A_{4\Delta\phi}$ is at a 6.7 σ level

 \geq in peripheral events at \sim 4.5 σ

Potential application to peripheral (hadronic) interactions:

relate photon density to energy flux of EM fields

$$n \propto \vec{S} = \mu_0^{-1} \vec{E} \times \vec{B}$$

 \triangleright report \overrightarrow{B} that matches measured cross section

Near Future Experimental Landscape

- STAR BES-2 program 2019-2021 Yi Yang, talk #388
 - collider mode six energies between 7.7 19.6GeV
 - event goals driven by dielectron program -> 10-15% significance in LMR/IMR
 - incl. CBM Fair Phase-0 program: endcap TOF
- ALICE Run 3 (2021+)

Sebastian Scheid, talk #191

- new ITS (resolution improvement 3-6x)
- TPC readout upgrade (rate 100x)
- dedicated dielectron runs with low B-field
- MPD ECAL installation (2020+) Adam Kisiel, talk #457
- NA60+.

Enrico Scomparin poster #314

- high precision, high statistics dimuon measurements
- measure chiral ρ-a1 mixing
- discussion preparation of Lol

My Summary

- EM/weak probes are the most versatile probes in heavy-ion collisions
 - nPDFs, QGP temperature, chiral symmetry restoration, lifetime, B-field
- Yes, there is still a photon puzzle
 - new data sets are collected and analyzed
 - improve η mesons at low p_T
- Precision data is collected over almost 4 orders of magnitude
- New experiments and upgrades being proposed and/or readied

The future of weak and electromagnetic probes looks very bright

Thank you!

