How EIC can help us to understand heavy-ion collisions Yoshitaka Hatta Brookhaven National Laboratory ### Outline - TMD - GPD - Spin - Saturation - Initial geometry - Jets - Proton mass #### Understanding that glue that binds us all Especially the role of gluons—the `least understood' particle in the Standard Model. How do they give rise to the nucleon's mass, spin, etc? ## Future DIS experiments worldwide #### Planned DIS Colliders around the world R. Yoshida, talk at DIS2019 | Facility | Years E_{cm} | | Luminosity | Ions | Polarization | | |----------------|----------------|----------------------------|--------------------------|-------------------|------------------------------|--| | | | (GeV) | $(10^{33}cm^{-2}s^{-1})$ | | | | | EIC in US | > 2028 | $20 - 100 \rightarrow 140$ | 2 - 30 | $p \rightarrow U$ | e, p, d, ³ He, Li | | | EIC in China | > 2028 | 16 - 34 | $1 \rightarrow 100$ | $p \to Pb$ | e, p, light nuclei | | | LHeC (HE-LHeC) | > 2030 | 200 - 1300 (1800) | 10 | depends on LHC | e possible | | | PEPIC | > 2025 | $530 \rightarrow 1400$ | $< 10^{-3}$ | depends on LHC | e possible | | | VHEeP | > 2030 | 1000 - 9000 | $10^{-5} - 10^{-4}$ | depends on LHC | e possible | | | FCC-eh | > 2044 | 3500 | 15 | depends on FCC-hh | e possible | | **EPPSU DIS Input** ## Future DIS experiments worldwide #### Planned DIS Colliders around the world R. Yoshida, talk at DIS2019 ## Exploring terra incognita Unprecedented coverage in kinematics. Tremendous physics opportunities. # Tomography (TMD, GPD) #### Multi-dimensional tomography $$u(x) = \int \frac{dz^{-}}{4\pi} \langle P|\bar{u}(0)\gamma^{+}u(z^{-})|P\rangle \qquad x = \frac{E_{parton}}{E_{proton}}$$ Ordinary PDF → 1D tomographic image of the nucleon The nucleon is much more complicated! Partons also have transverse momentum \vec{k}_{\perp} and are spread in impact parameter space \vec{b}_{\perp} Transverse momentum dependent distribution (TMD) 3D tomography Generalized parton distribution (GPD) 3D tomography $\left(\frac{1}{2} \right)$ Wigner distribution 5D tomography #### Measuring TMD : Semi-inclusive DIS Measure particular hadron species with fixed transverse momentum P_{\perp} plus anything else. When P_{\perp} is small, TMD factorization Collins, Soper, Sterman; Ji, Ma, Yuan,... $$\frac{d\sigma}{dP_{\perp}} = H(\mu) \int d^2q_{\perp} d^2k_{\perp} f(x,k_{\perp},\mu,\zeta) D(z,q_{\perp},\mu,Q^2/\zeta) \delta^{(2)}(zk_{\perp}+q_{\perp}-P_{\perp}) + \cdots$$ TMD PDF TMD frag. function Open up a new class of observables where perturbative QCD is applicable! ## TMD global analysis | | Framework | W+Y | HERMES | COMPASS | DY | Z
production | N of points | |--------------------------------|-----------|-----|---------------------------|--------------|----|-----------------|---------------------| | KN 2006
hep-ph/0506225 | LO-NLL | W | × | × | ~ | ~ | 98 | | QZ 2001
hep-ph/0506225 | NLO-NLL | W+Y | × | × | ~ | ~ | 28 (?) | | RESBOS
resbos@msu | NLO-NNLL | W+Y | × | × | ~ | ~ | >100 (?) | | Pavia 2013
arXiv:1309.3507 | LO | W | ~ | × | × | × | 1538 | | Torino 2014
arXiv:1312.6261 | LO | W | (separately) | (separately) | × | × | 576 (H)
6284 (C) | | DEMS 2014
arXiv:1407.3311 | NLO-NNLL | W | × | × | ~ | ~ | 223 | | EIKV 2014
arXiv:1401.5078 | LO-NLL | W | 1 (x,Q ²) bin | 1 (x,Q²) bin | ~ | ~ | 500 (?) | | SIYY 2014
arXiv:1406.3073 | NLO-NLL | W+Y | × | ~ | ~ | ~ | 200 (?) | | Pavia 2017
arXiv:1703.10157 | LO-NLL | W | ~ | ~ | ~ | ~ | 8059 | | SV 2017
arXiv:1706.01473 | NNLO-NNLL | W | × | × | ~ | ~ | 309 | | BSV 2019
arXiv:1902.08474 | NNLO-NNLL | W | × | × | ~ | ~ | 457 | Still in its infancy. Fully blossoms in the EIC era! #### TMD in heavy-ions: Unintegrated gluon distribution at small-x $$\frac{1}{P^+} \int \frac{d^3k}{(2\pi)^3} e^{ik_\perp \cdot z_\perp} \langle P|F^{+i}(z)WF^{+j}(0)|P\rangle = \frac{\delta^{ij}}{2} x G(x,k_\perp) - \frac{1}{2} \left(\delta^{ij} - 2\frac{k_\perp^i k_\perp^j}{k_\perp^2}\right) x h_\perp(x,k_\perp)$$ unpolarized gluon linearly polarized gluon #### Can be constrained at EIC $\cos 2\phi$ correlation in dijet angular distribution Metz, Zhou (2011) + many others $$\frac{d\sigma}{dP.S.} \propto xG(x,k_{\perp}) + \cos(2\phi) xh_{\perp}(x,k_{\perp})$$ #### Applications in heavy-ions - Angular correlation in UPC $\gamma\gamma ightarrow e^+e^-$ - talk by Brandenburg on Monday - Initial axial charge fluctuations in heavy-ion $$\left\langle \dot{\nu}(\mathbf{x})\dot{\nu}(\mathbf{y})\right\rangle = \frac{3g^4N_{\rm c}^2(N_{\rm c}^2-1)}{32} \left[\left(G_{(U)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \left(G_{(V)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 - \left(h_{\perp(U)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \left(h_{\perp(V)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \right]$$ #### Generalized parton distributions (GPD) Non-forward matrix element of the collinear operator $$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S'|\bar{\psi}(0)\gamma^{\mu}\psi(y^{-})|PS\rangle$$ $$= H_{q}(x, \Delta)\bar{u}(P'S')\gamma^{\mu}u(PS) + E_{q}(x, \Delta)\bar{u}(P'S')\frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m}u(PS)$$ Distribution of partons in impact parameter space Fourier transform $\Delta_{\perp} \rightarrow b_{\perp}$ Measurable in Deeply Virtual Compton Scattering (DVCS) Dupre, Guidal, Vanderhaeghen (2017) ### Nucleon gravitational form factors $$\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{u}(P') \left[\mathbf{A}_{q,g} \gamma^{(\mu} \bar{P}^{\nu)} + \mathbf{B}_{q,g} \frac{\bar{P}^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}}{2M} \right]$$ $$+ D_{q,g} \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{4M} + \bar{C}_{q,g} M g^{\mu\nu} \bigg] u(P)$$ All the form factors are interesting and measurable! $A_{q,q}$ Momentum fraction $B_{q,g}$ Ji sum rule $D_{q,q}$ Pressure' and 'shear' inside proton $ar{C}_{a,a}$ Mass, pressure # Proton spin ## Proton spin puzzle The proton has spin ½. The proton is not an elementary particle. Jaffe-Manohar sum rule $$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q + L^g$$ Quark spin Orbital angular momentum (OAM) $$\Delta \Sigma = 1$$ in the quark model $$\Delta\Sigma = 0.25 \sim 0.3$$ Experiments revealed that less than 30% of the proton spin comes from quark spin. #### Evidence of nonzero ΔG RHIC spin program elucidated that the gluon spin contribution is significant! $$\int\limits_{0.05}^{1}\!\!dx \Delta g(x,Q^2=10 GeV^2) = 0.20^{+.06}_{-.07} \quad DSSV++ \\ \int\limits_{0.2}^{0.05}\!\!dx \Delta g(x,Q^2=10 GeV^2) = 0.17+-0.06 \quad NNPDFpol1.1 \\ \int\limits_{0.8}^{0.05}\!\!dx \Delta g(x,Q^2=1 GeV^2) = 0.5+-0.4 \quad JAM15$$ Beware, there is huge uncertainty from the small-x region EIC will finally pin down the value of ΔG How does spin behave at small-x? Is saturation important for spin? Kovchegov, Pitonyak, Sievert; Boussarie, YH, Yuan What is the role of the orbital angular momentum? Can we measure OAM? #### Orbital angular momentum of partons QCD Wigner distribution Belitsky, Ji, Yuan (2003) $$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \frac{d^3 z}{16\pi^3} e^{ixP^+z^- - i\vec{k}_{\perp} \cdot \vec{z}_{\perp}} \langle P - \frac{\Delta}{2} | \bar{\psi}(b - \frac{z}{2}) \gamma^+ W \psi(b + \frac{z}{2}) | P + \frac{\Delta}{2} \rangle$$ Define $$L^q = \int dx \int d^2b_{\perp} d^2k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^q(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$ Lorce, Pasquini (2011); YH (2011); Xiong, Ji, Yuan (2012) Similar discussions in heavy-ion community in the context of global polarization. $$\frac{d\Pi^{\alpha}(p)}{d^3p} \approx \frac{\hbar}{2mE_p} \int d\Sigma_{\lambda} p^{\lambda} \tilde{\Omega}^{\alpha\sigma} p_{\sigma} f_{\rm FD}(x,p) (1-f_{\rm FD}(x,p)), \qquad \text{Becattini, Chandra, Del Zanna, Grossi (2013)} \\ \text{Fang, Pang, Wang, Wang, Wang (2016)} \\ \text{Becattini, talk on Wednesday}$$ ### Saturation #### Has saturation been observed at HERA, RHIC, LHC? #### EIC: Dream machine for saturation No initial state interactions (advantage over LHC, RHIC) Nuclear enhancement of the saturation momentum (advantage over HERA) $$Q_s^2 \propto A^{1/3}$$ At EIC, for heavy nuclei, Q_s becomes perturbative! (It wasn't the case at HERA actually...) #### Can saturation become precision physics? No all-order proof of factorization. `Leading order' already contains infinitely many diagrams with infinitely many twists. NLL Balitsky-Kovchegov (BK) Balitsky, Chirilli (2008) NNLL BK Caron-Huot, Herranen (2016) Factorization should be checked order by order. Currently NLO for a few processes. Chirilli, Xiao, Yuan; Beuf; Mulian, Iancu; Roy, Venugopalan... e.g., NLO exclusive diffractive dijet, vector meson production at EIC Boussarie, Grabovsky, Szymanowski, Wallon (2016) Need also 'collinear improvement' lancu, talk on Wednesday NLO global analysis of the dipole S-matrix at EIC? cf. Albacete, Armesto, Milhano, Salgado (2009) # Initial geometry ## Initial geometry and fluctuations Proton/nucleus wavefunction at small-x full of fluctuations and correlations **DIPSY** Monte Carlo event generator based on Mueller's dipole model. Includes BFKL cascade and saturation. Avsar, Flensburg, Gustafson, Lonnblad Dipole evolution implementated in PYTHIA8, can simulate large nucleus and virtual photon \rightarrow Full simulation of γ^*A including final states! Bierlich, Rasmussen (2019) Avsar, Flensburg, YH, Ollitrault, Ueda (2011) #### Incoherent diffraction Probe of fluctuations inside the target (Good-Walker picture) $$\frac{d\sigma^{diff}}{dt}\Big|_{incoherent} = \langle T^2 \rangle - \langle T \rangle^2$$ Bumpy initial condition + b-dependent JIMWLK Mantysaari, Schenke (2016,2019) Good description of the HERA data at large- t . Extension to light nuclei ightarrow EIC # Jets #### Jets at EIC Compared to jets at LHC, Smaller p_T , smaller multiplicity Less underlying events and pileups Stronger power corrections. New opportunities for jet physics #### Perturbation theory stabilizes at NNLO! NNLO single inclusive jet in ep collisions at EIC Abelof, Boughezal, Liu, Petriello (2016) ## Jet quenching at EIC h h Clean environment to study jet quenching The effects will be small compared to AA, precision required. → useful to discriminate different approaches to jet quenching. hadronization outside the medium Insights into hadronization Vitev, talk at POETIC2019 Vitev, Sievert (2018) Heavy-flavor R_{eA} → sensitive to different scenarios of hadronization hadronization inside #### Proton mass NAS report (July 2018) **Finding 1:** An EIC can uniquely address three profound questions about nucleons-protons—and how they are assembled to form the nuclei of atoms: - How does the mass of the nucleon arise? - How does the spin of the nucleon arise? - What are the emergent properties of dense systems of gluons? #### Proton mass crisis u,d quark masses add up to ~10MeV, only 1 % of the proton mass! QCD trace anomaly $$T^{\mu}_{\mu} = \frac{\beta(g)}{2g}F^2 + m(1 + \gamma_m(g))\bar{q}q$$ $\langle P|T^{\mu}_{\mu}|P\rangle = 2M^2$ Nonperturbative gluon condensate $\langle P|F^{\mu\nu}F_{\mu\nu}|P\rangle$ responsible for hadron masses. #### Photo-production of J/ψ near threshold Kharzeev, Satz, Syamtomov, Zinovjev (1998) Sensitive to the gluon condensate $$\langle P'|F^{\mu\nu}F_{\mu\nu}|P\rangle$$ Ongoing experiments at JLab Can be an interesting physics case at EIC, especially in China Holographic calculation fitted to the latest JLab data. YH, Yang (2018) YH, Rajan, Yang (2019) #### Threshold production at high energy colliders? **EIC photo-production limit** **e**STARlight Monte Carlo Lomnitz, Klein (2018), Klein, talk at POETIC 2019 #### RHIC, Ultra-peripheral pA collisions Challenging to measure, need forward detectors. Heavy-ion can help us to understand EIC physics! #### Conclusion - In 10-15 years from now, DIS experiments will be running in the US, China and Europe. - Tremendous physics opportunities for theory, experiments, and lattice QCD - Many feedbacks to heavy-ion physics, especially gluon saturation and initial geometry - Conversely, heavy-ion can help us to understand EIC physics - → Ultra-peripheral collision (UPC)