How EIC can help us to understand heavy-ion collisions

Yoshitaka Hatta Brookhaven National Laboratory

Outline

- TMD
- GPD
- Spin
- Saturation
- Initial geometry
- Jets
- Proton mass

Understanding that glue that binds us all

Especially the role of gluons—the `least understood' particle in the Standard Model. How do they give rise to the nucleon's mass, spin, etc?

Future DIS experiments worldwide

Planned DIS Colliders around the world

R. Yoshida, talk at DIS2019

Facility	Years E_{cm}		Luminosity	Ions	Polarization	
		(GeV)	$(10^{33}cm^{-2}s^{-1})$			
EIC in US	> 2028	$20 - 100 \rightarrow 140$	2 - 30	$p \rightarrow U$	e, p, d, ³ He, Li	
EIC in China	> 2028	16 - 34	$1 \rightarrow 100$	$p \to Pb$	e, p, light nuclei	
LHeC (HE-LHeC)	> 2030	200 - 1300 (1800)	10	depends on LHC	e possible	
PEPIC	> 2025	$530 \rightarrow 1400$	$< 10^{-3}$	depends on LHC	e possible	
VHEeP	> 2030	1000 - 9000	$10^{-5} - 10^{-4}$	depends on LHC	e possible	
FCC-eh	> 2044	3500	15	depends on FCC-hh	e possible	

EPPSU DIS Input

Future DIS experiments worldwide

Planned DIS Colliders around the world

R. Yoshida, talk at DIS2019

Exploring terra incognita

Unprecedented coverage in kinematics. Tremendous physics opportunities.

Tomography (TMD, GPD)

Multi-dimensional tomography

$$u(x) = \int \frac{dz^{-}}{4\pi} \langle P|\bar{u}(0)\gamma^{+}u(z^{-})|P\rangle \qquad x = \frac{E_{parton}}{E_{proton}}$$

Ordinary PDF → 1D tomographic image of the nucleon

The nucleon is much more complicated! Partons also have transverse momentum \vec{k}_{\perp} and are spread in impact parameter space \vec{b}_{\perp}

Transverse momentum dependent distribution (TMD) 3D tomography

Generalized parton distribution (GPD) 3D tomography

 $\left(\frac{1}{2} \right)$ Wigner distribution 5D tomography

Measuring TMD : Semi-inclusive DIS

Measure particular hadron species with fixed transverse momentum P_{\perp} plus anything else.

When P_{\perp} is small, TMD factorization

Collins, Soper, Sterman; Ji, Ma, Yuan,...

$$\frac{d\sigma}{dP_{\perp}} = H(\mu) \int d^2q_{\perp} d^2k_{\perp} f(x,k_{\perp},\mu,\zeta) D(z,q_{\perp},\mu,Q^2/\zeta) \delta^{(2)}(zk_{\perp}+q_{\perp}-P_{\perp}) + \cdots$$
 TMD PDF TMD frag. function

Open up a new class of observables where perturbative QCD is applicable!

TMD global analysis

	Framework	W+Y	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	LO-NLL	W	×	×	~	~	98
QZ 2001 hep-ph/0506225	NLO-NLL	W+Y	×	×	~	~	28 (?)
RESBOS resbos@msu	NLO-NNLL	W+Y	×	×	~	~	>100 (?)
Pavia 2013 arXiv:1309.3507	LO	W	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	LO	W	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO-NNLL	W	×	×	~	~	223
EIKV 2014 arXiv:1401.5078	LO-NLL	W	1 (x,Q ²) bin	1 (x,Q²) bin	~	~	500 (?)
SIYY 2014 arXiv:1406.3073	NLO-NLL	W+Y	×	~	~	~	200 (?)
Pavia 2017 arXiv:1703.10157	LO-NLL	W	~	~	~	~	8059
SV 2017 arXiv:1706.01473	NNLO-NNLL	W	×	×	~	~	309
BSV 2019 arXiv:1902.08474	NNLO-NNLL	W	×	×	~	~	457

Still in its infancy. Fully blossoms in the EIC era!

TMD in heavy-ions: Unintegrated gluon distribution at small-x

$$\frac{1}{P^+} \int \frac{d^3k}{(2\pi)^3} e^{ik_\perp \cdot z_\perp} \langle P|F^{+i}(z)WF^{+j}(0)|P\rangle = \frac{\delta^{ij}}{2} x G(x,k_\perp) - \frac{1}{2} \left(\delta^{ij} - 2\frac{k_\perp^i k_\perp^j}{k_\perp^2}\right) x h_\perp(x,k_\perp)$$
 unpolarized gluon linearly polarized gluon

Can be constrained at EIC

 $\cos 2\phi$ correlation in dijet angular distribution Metz, Zhou (2011) + many others

$$\frac{d\sigma}{dP.S.} \propto xG(x,k_{\perp}) + \cos(2\phi) xh_{\perp}(x,k_{\perp})$$

Applications in heavy-ions

- Angular correlation in UPC $\gamma\gamma
 ightarrow e^+e^-$
- talk by Brandenburg on Monday
- Initial axial charge fluctuations in heavy-ion

$$\left\langle \dot{\nu}(\mathbf{x})\dot{\nu}(\mathbf{y})\right\rangle = \frac{3g^4N_{\rm c}^2(N_{\rm c}^2-1)}{32} \left[\left(G_{(U)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \left(G_{(V)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 - \left(h_{\perp(U)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \left(h_{\perp(V)}^{(1)}(\mathbf{x},\mathbf{y})\right)^2 \right]$$

Generalized parton distributions (GPD)

Non-forward matrix element of the collinear operator

$$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S'|\bar{\psi}(0)\gamma^{\mu}\psi(y^{-})|PS\rangle$$

$$= H_{q}(x, \Delta)\bar{u}(P'S')\gamma^{\mu}u(PS) + E_{q}(x, \Delta)\bar{u}(P'S')\frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m}u(PS)$$

Distribution of partons in impact parameter space

Fourier transform $\Delta_{\perp} \rightarrow b_{\perp}$

Measurable in Deeply Virtual Compton Scattering (DVCS)

Dupre, Guidal, Vanderhaeghen (2017)

Nucleon gravitational form factors

$$\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{u}(P') \left[\mathbf{A}_{q,g} \gamma^{(\mu} \bar{P}^{\nu)} + \mathbf{B}_{q,g} \frac{\bar{P}^{(\mu} i \sigma^{\nu)\alpha} \Delta_{\alpha}}{2M} \right]$$

$$+ D_{q,g} \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{4M} + \bar{C}_{q,g} M g^{\mu\nu} \bigg] u(P)$$

All the form factors are interesting and measurable!

 $A_{q,q}$ Momentum fraction

 $B_{q,g}$ Ji sum rule

 $D_{q,q}$ Pressure' and 'shear' inside proton

 $ar{C}_{a,a}$ Mass, pressure

Proton spin

Proton spin puzzle

The proton has spin ½.

The proton is not an elementary particle.

Jaffe-Manohar sum rule

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q + L^g$$
Quark spin Orbital angular momentum (OAM)

$$\Delta \Sigma = 1$$
 in the quark model

$$\Delta\Sigma = 0.25 \sim 0.3$$

Experiments revealed that less than 30% of the proton spin comes from quark spin.

Evidence of nonzero ΔG

RHIC spin program elucidated that the gluon spin contribution is significant!

$$\int\limits_{0.05}^{1}\!\!dx \Delta g(x,Q^2=10 GeV^2) = 0.20^{+.06}_{-.07} \quad DSSV++ \\ \int\limits_{0.2}^{0.05}\!\!dx \Delta g(x,Q^2=10 GeV^2) = 0.17+-0.06 \quad NNPDFpol1.1 \\ \int\limits_{0.8}^{0.05}\!\!dx \Delta g(x,Q^2=1 GeV^2) = 0.5+-0.4 \quad JAM15$$

Beware, there is huge uncertainty from the small-x region EIC will finally pin down the value of ΔG

How does spin behave at small-x?
 Is saturation important for spin?

Kovchegov, Pitonyak, Sievert; Boussarie, YH, Yuan

What is the role of the orbital angular momentum?
 Can we measure OAM?

Orbital angular momentum of partons

QCD Wigner distribution Belitsky, Ji, Yuan (2003)

$$W(x, \vec{k}_{\perp}, \vec{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} \frac{d^3 z}{16\pi^3} e^{ixP^+z^- - i\vec{k}_{\perp} \cdot \vec{z}_{\perp}} \langle P - \frac{\Delta}{2} | \bar{\psi}(b - \frac{z}{2}) \gamma^+ W \psi(b + \frac{z}{2}) | P + \frac{\Delta}{2} \rangle$$

Define
$$L^q = \int dx \int d^2b_{\perp} d^2k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^q(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$
 Lorce, Pasquini (2011); YH (2011); Xiong, Ji, Yuan (2012)

Similar discussions in heavy-ion community in the context of global polarization.

$$\frac{d\Pi^{\alpha}(p)}{d^3p} \approx \frac{\hbar}{2mE_p} \int d\Sigma_{\lambda} p^{\lambda} \tilde{\Omega}^{\alpha\sigma} p_{\sigma} f_{\rm FD}(x,p) (1-f_{\rm FD}(x,p)), \qquad \text{Becattini, Chandra, Del Zanna, Grossi (2013)} \\ \text{Fang, Pang, Wang, Wang, Wang (2016)} \\ \text{Becattini, talk on Wednesday}$$

Saturation

Has saturation been observed at HERA, RHIC, LHC?

EIC: Dream machine for saturation

No initial state interactions (advantage over LHC, RHIC)

Nuclear enhancement of the saturation momentum (advantage over HERA)

$$Q_s^2 \propto A^{1/3}$$

At EIC, for heavy nuclei, Q_s becomes perturbative! (It wasn't the case at HERA actually...)

Can saturation become precision physics?

No all-order proof of factorization.

`Leading order' already contains infinitely many diagrams with infinitely many twists.

NLL Balitsky-Kovchegov (BK) Balitsky, Chirilli (2008) NNLL BK Caron-Huot, Herranen (2016)

Factorization should be checked order by order. Currently NLO for a few processes.

Chirilli, Xiao, Yuan; Beuf; Mulian, Iancu; Roy, Venugopalan...

e.g., NLO exclusive diffractive dijet, vector meson production at EIC

Boussarie, Grabovsky, Szymanowski, Wallon (2016)

Need also 'collinear improvement' lancu, talk on Wednesday

NLO global analysis of the dipole S-matrix at EIC? cf. Albacete, Armesto, Milhano, Salgado (2009)

Initial geometry

Initial geometry and fluctuations

Proton/nucleus wavefunction at small-x full of fluctuations and correlations

DIPSY

Monte Carlo event generator based on Mueller's dipole model.
Includes BFKL cascade and saturation. Avsar, Flensburg, Gustafson, Lonnblad

Dipole evolution implementated in PYTHIA8, can simulate large nucleus and virtual photon \rightarrow Full simulation of γ^*A including final states! Bierlich, Rasmussen (2019)

Avsar, Flensburg, YH, Ollitrault, Ueda (2011)

Incoherent diffraction

Probe of fluctuations inside the target (Good-Walker picture)

$$\frac{d\sigma^{diff}}{dt}\Big|_{incoherent} = \langle T^2 \rangle - \langle T \rangle^2$$

Bumpy initial condition + b-dependent JIMWLK Mantysaari, Schenke (2016,2019)

Good description of the HERA data at large- t . Extension to light nuclei ightarrow EIC

Jets

Jets at EIC

Compared to jets at LHC,

Smaller p_T , smaller multiplicity

Less underlying events and pileups Stronger power corrections.

New opportunities for jet physics

Perturbation theory stabilizes at NNLO!

NNLO single inclusive jet in ep collisions at EIC Abelof, Boughezal, Liu, Petriello (2016)

Jet quenching at EIC

h h

Clean environment to study jet quenching
The effects will be small compared to AA, precision required.

→ useful to discriminate different approaches to jet quenching.

hadronization outside the medium

Insights into hadronization

Vitev, talk at POETIC2019 Vitev, Sievert (2018)

Heavy-flavor R_{eA}

→ sensitive to different scenarios of hadronization

hadronization inside

Proton mass

NAS report (July 2018)

Finding 1: An EIC can uniquely address three profound questions about nucleons-protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Proton mass crisis

u,d quark masses add up to ~10MeV, only 1 % of the proton mass!

QCD trace anomaly

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g}F^2 + m(1 + \gamma_m(g))\bar{q}q$$
 $\langle P|T^{\mu}_{\mu}|P\rangle = 2M^2$

Nonperturbative gluon condensate $\langle P|F^{\mu\nu}F_{\mu\nu}|P\rangle$ responsible for hadron masses.

Photo-production of J/ψ near threshold

Kharzeev, Satz, Syamtomov, Zinovjev (1998)

Sensitive to the gluon condensate

$$\langle P'|F^{\mu\nu}F_{\mu\nu}|P\rangle$$

Ongoing experiments at JLab
Can be an interesting physics case at EIC,
especially in China

Holographic calculation fitted to the latest JLab data.

YH, Yang (2018) YH, Rajan, Yang (2019)

Threshold production at high energy colliders?

EIC photo-production limit

eSTARlight Monte Carlo

Lomnitz, Klein (2018), Klein, talk at POETIC 2019

RHIC, Ultra-peripheral pA collisions

Challenging to measure, need forward detectors. Heavy-ion can help us to understand EIC physics!

Conclusion

- In 10-15 years from now, DIS experiments will be running in the US, China and Europe.
- Tremendous physics opportunities for theory, experiments, and lattice QCD
- Many feedbacks to heavy-ion physics, especially gluon saturation and initial geometry
- Conversely, heavy-ion can help us to understand EIC physics
 - → Ultra-peripheral collision (UPC)