

FACILITIES AND EXPERIMENTS

Andrea Dainese (INFN Padova, Italy)



## Outline



- Future AA/QGP research directions: high energy or high (B-)density
- eA colliders as precision cold-QCD machines
- Overview of low energy / high-μ<sub>B</sub> facilities & experiments
  - > HIAF, J-PARC, NICA, FAIR, SPS, RHIC-BES2
- Overview of high energy facilities & experiments
  - > RHIC, LHC, FCC/SppC
- Selected physics objectives
  - > Critical fluctuations and endpoint
  - QGP constituents and d.o.f.
  - Transport properties
  - Hadronisation
  - Thermal radiation

Sources: QM18-19, SQM19 CERN HI Town Meeting ESPPU



## Future research directions with AA collisions





#### **High energy collisions:**

- Quantify properties of QGP fluid and relate them to its constituents
- ◆ How is collectivity developed? can it be developed also in small systems (pp, pA)?

#### High (B)density collisions:

- Onset of deconfinement via energy scans
- ◆ Direct observation of 1st order phase transition in QCD
- ♦ Search for the Critical Endpoint (IQCD:  $\mu_B$  > 300, T < 140)
- ♦ QGP constituents at high  $\mu_B$  → Neutron Star EoS



## Future landscape of HI facilities





adapted from A. Dainese et al., arXiv:1602.04120



## Push the frontiers



## at low/high energy

## and high rate







## Detector technology frontier



- Main frontiers to enhance physics reach:
  - > rate capabilities & acceptance
  - tracking precision
- → high precision, reduce backgrounds, access to rarer probes (e.g. Z-jet, higher harmonics or moments, (multi-)HF baryons, X states, tops, hypernuclei ...)



x10-100 in "statistics" at RHIC and LHC

Increased interaction rate at both machines

Faster readout and larger acceptance

 Monolithic pixel trackers bring DCA resolution to 20-30 μm at p<sub>T</sub>=1 GeV/c

Pioneered by STAR; key development by ALICE, will be adopted also by sPHENIX, CBM, MPD, NA61, NA60+



## Precision cold-QCD at future eA colliders



Several eA collider facilities proposed in US, China, CERN

| ~~Viv  | 1017 |    | 110 |
|--------|------|----|-----|
| arXiv: | 1012 | UO | HU  |

| Facility       | Years  | $E_{cm}$                   | Luminosity               | Ions              | Polarization                 |
|----------------|--------|----------------------------|--------------------------|-------------------|------------------------------|
|                |        | (GeV)                      | $(10^{33}cm^{-2}s^{-1})$ |                   |                              |
| EIC in US      | > 2028 | $20 - 100 \rightarrow 140$ | 2 - 30                   | $p \to U$         | e, p, d, <sup>3</sup> He, Li |
| EIC in China   | > 2028 | 16 - 34                    | $1 \rightarrow 100$      | $p \to Pb$        | e, p, light nuclei           |
| LHeC (HE-LHeC) | > 2030 | 200 - 1300 (1800)          | 10                       | depends on LHC    | e possible                   |
| PEPIC          | > 2025 | $530 \rightarrow 1400$     | $< 10^{-3}$              | depends on LHC    | e possible                   |
| VHEeP          | > 2030 | 1000 - 9000                | $10^{-5} - 10^{-4}$      | depends on LHC    | e possible                   |
| FCC-eh         | > 2044 | 3500                       | 15                       | depends on FCC-hh | e possible                   |

- US EIC the most advanced proposal: already set as highest priority for a new US facility, CD-0 expected soon
- Two options: BNL, JLab





Physics goals → Y. Hatta



## Outline



- Future AA/QGP research directions: high energy or high (B-)density
- eA colliders as precision cold-QCD machines
- Overview of low energy / high-μ<sub>B</sub> facilities & experiments
  - > HIAF, J-PARC, NICA, FAIR, SPS, RHIC-BES2
- Overview of high energy facilities & experiments
  - > RHIC, LHC, FCC/SppC
- Selected physics objectives
  - Critical fluctuations and endpoint
  - QGP constituents and d.o.f.
  - Transport properties
  - Hadronisation
  - Thermal radiation



## Future high (B)density experiments





- Systematic exploration of high μ<sub>B</sub> region in the coming decade
- Facilities:
  - > BNL-RHIC
  - > CERN-SPS
  - > FAIR-SIS
  - > JINR-NICA
  - > J-PARC
  - > HIAF



Experiment

√s<sub>NN</sub>. GeV

 $\mu_{B}$ , MeV

Int. rate (kHz)

Hadrons

**Dileptons** 

OM2019, Wuhan, 09.11.19

Charm

Start

HADES /

miniCBM

2012, 2018

2.4 - 2.6

880 - 670

20

CEE

2023

1.8 - 2.7

880 - 750

50

## Future high (R) density experiments

CBM /

HADES

2025

2.7 - 5

780 - 400

0.000

(+)

Andrea Dainese



SPS

NA60+

>2025(?)

4.9 - 17.3

560 - 230

10,000

(+)

SPS

NA61

2009, 2022

4.9 - 17.3

560 - 230

T. Galatyuk, QM2018

| JAN .    | ratare riight (b) density experiments |      |           |           |          |      |      |
|----------|---------------------------------------|------|-----------|-----------|----------|------|------|
| Facility | SIS I 8                               | HIAF | Nuclotron | J-PARC-HI | SIS I 00 | NICA | RHIC |

DHS, D2S

>2025(?)

2 - 6.2

850 - 490

10,000

(+)

BM@N

2019 (Au)

2 - 3.5

850 - 670

50

(+)

STAR

2010,2019

3 - 19.6

720 - 210

0.01 - 2

MPD

2021

2.7 - 11

750 - 330

6



JINR BM @ Nuclotron (2019), MPD @ NICA (2021)









- ◆ Fixed-target \( \s\_{NN} = \) 2-3.5 GeV
- Up to 50 kHz
- Au-Au from 2020

- ♦  $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
- Up to 6 kHz
- Stage-1 (2020): barrel TPC, Ecal, PID
- Stage-2 (2023): silicon tracker, endcaps

A. Kisiel (MPD)

CEE @ HIAF-Langzhou (2023), J-PARC-HI (>2025?) (INFN)





- ◆ Fixed-target \( \s\_NN = 1.8-2.7 \) GeV
- Up to 50 kHz
- Hadron spectrometer

- HI operation in proposal / design phase
- New booster and linac needed
- Fixed-target √s<sub>NN</sub> = 2-6.2 GeV
- Hadron spectrometer ~10 kHz
- Muon spectrometer ~ 10 MHz

QM2019, Wuhan, 09.11.19 Andrea Dainese | |



## FAIR - CBM, HADES @ SIS 100 (2025)









- Fixed target ion and proton beams, √s<sub>NN</sub> = 2.7-5 GeV
- CBM: high-precision tracking, hadron and electron ID, very high rate capability (10 MHz) with real-time processing
- HADES: focus on low mult. AA, dileptons

V. Klochkov (CBM)



## NA61/SHINE (2022), NA60+ (>2025?) @ SPS





- Ongoing upgrade: pixel tracker, TPC readout at 1 kHz
- Pb-Pb at √s<sub>NN</sub> = 5 and 17 GeV in 2022-24
- Main goals: open charm cross section with ~10% precision, critical fluctuations with higher precision



- Proposal for a high-rate dimuon spectrometer with a silicon pixel tracker
  - > Eol submitted to SPSC, Lol in prep.
- ◆ 10 MHz Pb-Pb at \s<sub>NN</sub> = 5-17 GeV
- Main goals: caloric curve with thermal dimuons, characterize χ-symmetry restoration, charmonia and open charm (~1% precision)



## STAR @ RHIC-BES2 (2019)





- BES2: beam energy scan with upgraded STAR detector (extended acceptance in η)
- Au-Au: collider at √s<sub>NN</sub> = 7.7-19.6 GeV + Fixed Target at √s<sub>NN</sub> = 3-7.7 GeV
- Higher luminosity with electron cooling: 1-2 order of magnitude wrt BES1





## Outline



- Future AA/QGP research directions: high energy or high (B-)density
- eA colliders as precision cold-QCD machines
- Overview of low energy / high-μ<sub>B</sub> facilities & experiments
  - ➤ HIAF, J-PARC, NICA, FAIR, SPS, RHIC-BES2
- Overview of high energy facilities & experiments
  - > RHIC, LHC, FCC/SppC
- Selected physics objectives
  - > Critical fluctuations and endpoint
  - QGP constituents and d.o.f.
  - Transport properties
  - Hadronisation
  - Thermal radiation



## High-E colliders: RHIC, LHC, HE-LHC/FCC/SppC



| Facility              | RHIC          | LHC                       | HE-LHC, FCC / SppC        |
|-----------------------|---------------|---------------------------|---------------------------|
| Experiments           | sPHENIX, STAR | ALICE, ATLAS, CMS, LHCb,? | ?                         |
| . When                | 2023 – 2025   | 2021 – 2029, 2030?        | >2040?, >2045?            |
| $\sqrt{s_{NN}}$ (TeV) | 0.2           | 5.5                       | 10.5, 39                  |
| Int. rate (kHz)       | ~15           | ~50                       | ~100 (HE-LHC),~2500 (FCC) |

- General goals as phrased in HL-LHC Yellow Report (arXiv:1812.06772):
  - I. Macroscopic long-wavelength QGP properties with unprecedented precision
  - 2. **Microscopic** parton **dynamics** underlying QGP properties
  - 3. **Parton densities** in broad kinematic range and search for saturation
  - 4. Collectivity **across colliding systems**, hot medium in small systems?
- Complementarity of RHIC and LHC is crucial
- FCC/SppC open completely new opportunities in all these scientific lines



## sPHENIX @ RHIC (2023)





Ultimate performance for HQs at RHIC

- Got CD2/3: construction can start
- Compact and hermetic design
- Continuous readout at 15 kHz
  - > ~100B Au-Au events per year

- Focus on:
  - Fully reconstructed jets, with HCAL
  - Bottomonium states
  - HF mesons and baryons, with MAPS





## STAR @ RHIC (2023)





- Forward upgrade ready in 2021 Au-Au and d-Au runs in 2023-2025
  - $\triangleright$  Tracking and calorimeters 2.8 <  $\eta$  < 4.2: nPDFs, small-x with p-Au, longitudinal dynamics
- + exploit extended barrel acceptance in Au-Au at full RHIC energy
- Running at 1.4 kHz
  - > 4B Au-Au events per year





## Future LHC programme





- Run 3 and Run 4 programme recently discussed (HL-LHC ws)
- Main priority: large Pb-Pb sample, 13/nb
  - > x10 L<sub>int</sub> for "rare" triggers wrt Run 2
  - x100 MB sample for upgraded ALICE
- Proposed extension of "small system" programme
  - > Extended p-Pb run: nPDFs, collectivity, hot system signals?
  - > pp 14 TeV low pile-up with focus on high multiplicity
  - > Short 16O-16O (and p-O) run in Run 3:
    - E-loss in central AA with p-Pb-like multiplicity?
    - o Flow ←→ initial eccentricities



pp 14 TeV: e.g. with 200/pb sample same dN<sub>cb</sub>/dn as 60% central Pb-Pb



## ALICE LS2 Upgrade (2021) and LS3 ideas





#### ... and more:

- Fast Interaction Trigger
- New Online-Offline system
- Readout upgrade of several detectors
- x3 better tracking precision
- Continuous readout at 50 kHz
  - → ~100B Pb-Pb in Runs 3+4

- Upgrade proposals for LS3 (2026):
  - Replace inner barrel with a truly-cylindrical ultralight one: x3 less material
  - > FoCal with high-granularity readout for **direct photons at 3.2 < \eta < 5.8**: probe gluon density down to  $x \sim 5x10^{-6}$
  - > Exploring fixed-target programme with crystal collimated beam halo





## ATLAS and CMS LS3 Upgrades (2026)



- Run 3+4: goal 13/nb Pb-Pb, focus on rare triggers
- CMS, also large bandwidth for MB events: 6 kHz in Run 3, goal to increase for Run 4
- Major Phase-2 upgrades for HL-LHC
  - > Extension of tracker acceptance from  $|\eta|$ <2.5 to  $|\eta|$ <4
  - Endcap calorimeters with higher granularity
  - ➤ Precise timing detectors for pile-up rejection
     → t.o.f. PID
    - o ATLAS 2.5 < |η| < 5
    - o CMS |η| < 4

A. Govinda Stahl Leiton (CMS)





## LHCb LS2 Upgrade (2021)

SMOG2 cell

INFN

- Ongoing LS2 upgrade:
  - ➤ Tracker with higher granularity
    → Pb-Pb 30-100%
  - New storage cell for fixedtarget collisions at up to x100 higher rates (p ... Ne ... Xe)
- Proposal for phase-2 upgrade for Run 5 (2031)
  - ➤ Increased readout rate and granularity → central Pb-Pb
  - > Extended PID performance



P. Di Nezza



## Extending the LHC HI programme



- Run3+4 sample will also tease us with potentially new directions, just to name a few:
  - > Differential Z-jet balance studies
  - HF baryons with >1 HQ, XYZ states, hyper-nuclei A>5 or with charm?
  - Differential thermal radiation studies
  - Physics with top quarks
  - > ...
- Major L<sub>int,NN</sub> increase could be achieved with lower-A nuclei: Kr-Kr or Ar-Ar give up to x7 or x25 wrt Pb-Pb
  - > In exchange of milder QGP effects, but overall gain







## "Si-only" HI experiment for LHC Run 5 (>2031?)



- Fast, ultra-thin detector with precise tracking and timing
  - Exploit higher NN lumi with intermediate-A nuclei
  - Ultimate performance for (multi-)HF, thermal radiation and soft hadrons (<50 MeV)</p>



- Pre-shower layers with W+pixels for ID high-p electrons
- Timing layers σ~25 ps for t.o.f. ID of hadrons and low-p electrons
- Insertable converter layer for photom detection
- Innermost layers inside the beam pipe



arxiv:1902.0121

2M2019, Wuhan, 09.11.19 Andrea Dainese



## Far future: HIs in a 100 km collider? FCC / SppC



- 100 km tunnel: one of the options for HEP in the 2040s-50s
- Two studies: CERN-FCC (CDR done), Chinese SppC (pre-CDR)
- Both could start as e<sup>+</sup>e<sup>-</sup> Higgs/W/Z/top-factories
- AA and eA operation in baseline design





## Far future: HIs in a 100 km collider? FCC / SppC



- ◆ FCC-hh HI performance: Pb-Pb √s<sub>NN</sub> = 39 TeV
- → >100 nb<sup>-1</sup>/month in ultimate luminosity scenario: ~ 10x full LHC L<sub>int</sub> per month!
- ◆ QGP from LHC to FCC: volume x2, energy density x3, initial T₀ up to 0.8-1 GeV!

#### Thermal charm?



Ko, Liu, JPG43 (2016) 12, 125108 Zhou et al., PLB758 (2016) 434

#### New hard probes



Apolinario, Milhano, Salam, Salgado, PRL120 (2018) 23, 232301

#### **Smallest-x ever**



A. Dainese et al., arXiv:1605.01389



## Outline



- Future AA/QGP research directions: high energy or high (B-)density
- eA colliders as precision cold-QCD machines
- Overview of low energy / high-μ<sub>B</sub> facilities & experiments
  - ➤ HIAF, J-PARC, NICA, FAIR, SPS, RHIC-BES2
- Overview of high energy facilities & experiments
  - > RHIC, LHC, FCC/SppC

#### Selected physics objectives

- Critical fluctuations and endpoint
- QGP constituents and d.o.f.
- Transport properties
- Hadronisation
- Thermal radiation





## Critical fluctuations and search for critical point



Main tool: net baryon fluctuations → needs high statistics and large acceptance



Systematic scan of high- $\mu_B$  region, for the first time with very high luminosity: BES-II, SIS100, NICA







## Critical fluctuations and search for critical point



#### Main tool: net baryon fluctuations → needs high statistics and large acceptance



Systematic scan of high- $\mu_B$  region, for the first time with very high luminosity: BES-II, SIS100, NICA



Precise characterisation of phase transition via high order (>3) moments at the LHC







## QGP constituents







What are the relevant degrees of freedom vs. scale Q and Temp?

- High-Q: point-like color charges?
- ...: thermal quarks and gluons?
- Low-Q: quasi-particles?
- → Probes with broad range of scales
- → Complementarity RHIC / LHC





## **QGP** constituents





What are the relevant degrees of freedom vs. scale Q and Temp?

- High-Q: point-like color charges?
- ...: thermal quarks and gluons?
- Low-Q: quasi-particles?
- → Probes with broad range of scales
- → Complementarity RHIC/LHC



→ High-precision γ/Z/h-jet momentum and angular (de)correlation studies at RH C and LHC

High-Q/High-T:



Low-Q/Low-T:





## QGP transport properties





Transverse Momentum [GeV/c]

0.8

0.6 0.4

0.2

D and B at LHC and RHIC → Heavy quark diffusion coefficients  $2\pi TD_S(T)$ 

> e.g. Bayesian analysis with modified Langevin (Bass et al.)

 $2\pi TD_S$  in hadronic matter  $(T < T_c)$  with NA60+ at SPS?







## QGP transport properties and density ... vs time







#### D and B at LHC (Runs3+4)

- → Heavy quark diffusion coefficients 2πTD<sub>S</sub>(T)
  - e.g. Bayesian analysis with modified Langevin (Bass et al.)





#### Boosted top decay chain

- qq from W probes the QGP with delay τ<sub>tot</sub> of up to
  - ~1-2 fm/c at LHC (Kr)
  - ~5 fm/c at HE-LHC
  - ~10 fm/c at FCC





## Understanding hadronisation: from HQs





← cc un-/re- binding at LHC to probe QCD potential; c and b baryons to test hadronisation dynamics from small to larger systems →







## Understanding hadronisation: from HQs to hyper-A





← cc un-/re- binding at LHC to probe QCD potential; c and b baryons to test hadronisation dynamics from small to larger systems →







(Hyper-) nuclei (A=3,4) at LHC and up to A=6 at SIS100 to test strange matter properties (→ neutron star EoS)





## Thermal radiation: caloric curve of QCD matter CINFN



~% uncertainty on T<sub>eff</sub> at SIS100 and SPS with di-muons from CBM and NA60+



~10-15% uncertainty on T<sub>eff</sub> at LHC and RHIC energies with di-electrons from ALICE and STAR







**ALICE** LHC





## Conclusions



- Today: still in the middle of exploiting the latest/largest LHC Pb-Pb run
- Very rich decade ahead of us:
  - Data from 6-7 facilities
  - From current 7 to 12-14 running experiments
  - Up to x100 higher rates / Lint





## Conclusions





- Today: still in the middle of exploiting the latest/largest LHC Pb-Pb run
- Very rich decade ahead of us:
  - Data from 6-7 facilities
  - From current 7 to 12-14 running experiments
  - Up to x100 higher rates / Lint



We are very eager to plug them in ©



## Conclusions



- Today: still in the middle of exploiting the latest/largest LHC Pb-Pb run
- Very rich decade ahead of us:
  - Data from 6-7 facilities
  - From current 7 to 12-14 running experiments
  - Up to x100 higher rates / Lint



- Next decade also crucial to shape the long-term future of the field:
  - Secure and build an EIC → very broad (cold) QCD programme, strong connection with other communities
  - Pursue LHC Run 5 HI programme → not an extension but a whole new programme, with new observables and possibly a new detector
  - Keep engagement with future collider options, contribute to detector design





#### Today: still in the middle of exploiting the latest/largest LHC Pb-Pb run

- Very rich decade ahead of us:
  - Data from 6-7 facilities
  - From current 7 to 12-14 running experiments
  - Up to x100 higher rates / Lint

## Conclusions





- Next decade also crucial to shape the long-term future of the field:
  - Secure and build an EIC → very broad (cold) QCD programme, strong connection with other communities
  - Pursue LHC Run 5 HI programme → not an extension but a whole new programme, with new observables and possibly a new detector
  - Keep engagement with future collider options, contribute to detector design

New (and unconventional) ideas welcome!



# OUTATIME



# Thank you!

Thanks for inputs and feed-back:

F Antinori, H Caines, T Galatyuk, J F Grosse-Oetringhaus, A Kisiel, D Morrison, L Musa, G Roland, M van Leeuwen, Z Xu





## **EXTRA SLIDES**



ALICE LS3 possible upgrades (2026)









- ITS3 inner barrel
  - Replace 3 innermost layers with ultra-thin truly cylindrical pixel sensors
  - Material budget down x3
  - x2 better tracking precision
  - Enhance dielectron and HF performance





- FoCal at 3.2 < η < 5.8</li>
  - High readout granularity EM calorimeter + H-calorimeter
  - Forward direct photons in p-Pb to probe x down to 5x10-6
  - > + forward  $\pi^0$ , jets, J/ $\psi$ , UPC
- Fixed-target collisions
  - Exploratory studies for crystalcollimated beam halo on insertable solid target



## Nuclear PDFs



#### Closer future: LHC, RHIC, EIC $\rightarrow$ pA 10<sup>-6</sup><x<0.2, eA 10<sup>-3</sup><x<1



Forward direct γ in p-Pb at LHC, compared to EIC



#### Drell-Yan and W asymmetry p-Pb at LHC



Further future? LHeC, FCC-hh/he  $\rightarrow$  pA 10<sup>-7</sup><x<1, eA 10<sup>-6</sup><x<1





