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Dimensional Analysis:
Fractal Dimensions and the coastline of Britain
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Dimensional Analysis Fractal Dimensions

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m ∝ Ld

This coincides with the “normal life” understanding of dimensionality
for integer d .

For Fractals, d is not an integer.

E.g. Sierṕınski triangle:
mass triples when size doubles
→ d = log(3)/log(2) ≈ 1.585
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E.g. Sierṕınski triangle:
mass triples when size doubles
→ d = log(3)/log(2) ≈ 1.585

4 Stefan Recksiegel (TUM) Using dimensional analysis as a measure of fine tuning



Dimensional Analysis Fractal Dimensions

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m ∝ Ld

This coincides with the “normal life” understanding of dimensionality
for integer d . For Fractals, d is not an integer.
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How long is the coastline of Britain ?

Benôıt Mandelbrot, 1967
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How long is the coastline of Britain ?

That depends on the length of the ruler that we use!

Benôıt Mandelbrot, 1967
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Dimensional Analysis How long is the coastline of Britain ?

How long is the coastline of Britain ?

Unit 200km: ca. 2400km, Unit 50km: ca. 3400km.

Benôıt Mandelbrot, 1967
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Dimensional Analysis How long is the coastline of Britain ?

The Box Counting algorithm

2D: For solid objects, the fill ratio will approach a constant,
for a line, it will approach 1/n (n×n boxes). For a fractal, . . .
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Dimensional Analysis How long is the coastline of Britain ?

. . . , we can make a logarithmic plot of the fill ratio:

The dimension of the British coastline is 1.25.

Benôıt Mandelbrot, 1967
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Dimensional Analysis Fine tuning in a Toy Model

“Fine tuning” in a Toy Model

Let us look at two functions, one well behaved one and one that requires
fine tuning in x to bring the “observable” (i.e. f (x)) into a rather
narrow “experimental window” of 0.5± 0.005:

sin(x) and sin(1/x)

Traditional definition of fine tuning: Barbieri-Guidice NPB 306:63(1988)

BGfineO(x) =

∣∣∣∣ x

O2

∂O2(x)

∂x

∣∣∣∣

Analytically very easy to calculate, but which value of x to choose?

For sin x , use x = sin−1 0.5, this way BGfinesin x = 1.81. For sin 1/x , . . .
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Dimensional Analysis Fine tuning in a Toy Model

Average of BGfineO(x) =
∣∣∣ x
O2

∂O2(x)
∂x

∣∣∣ over the generated “valid” points:

BGfinesin x = 1.81 (= näıve result), BGfinesin 1/x = 93.58.

Our proposal: Much easier to calculate (does not depend on O →
multiple observables!) and at least as instructive:

Box-counting dimension of valid points

No fine tuning: dim ≈ # parameters ↔ Extreme fine tuning: dim ≈ 0
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Dimensional Analysis Fine tuning in a Toy Model

What are the dimensionalities of the allowed ranges for x?

sin x sin 1/x

For sin(x) we observe a constant
fraction of filled boxes over
several orders of magnitude in
box size.

⇒ No fine tuning

For sin(1/x) we observe a falling
fraction of filled boxes for
increasing numbers of boxes
corresponding to dim ≈ 0.5.
⇒ Moderate fine tuning
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Physics Examples: SM 4G / Littlest Higgs with T-parity

Effective dim. of the parameter space of SM4 and LHT
Distrib. of valid points in SM4 ... ... and in LHT

In SM4, the valid points in parameter space lie on a rather connected
structure in 10-dim. space with an effective dimension of ∼ 3.

In LHT, the valid points are single points distributed evenly over the
parameter space, the exp. constraints are fulfilled by fine tuning the
mixing parameters and the mirror fermion masses.

Feldmann/Promberger/SR EPJC 72:1867 (2012)
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in
Dark Matter annihilation
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV )
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density ΩDMh2 Planck = 0.1187(17).

If there are other states close (in mass)
to this dark matter candidate,
resonant annihilation can change the
relic density contribution significantly.

This is called Sommerfeld Enhancement.
Sommerfeld (1931); Hisano et al. (2004), . . .
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Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters M1,M2,M3, µ,MA,Msf , tanβ, . . .
Allowed (correct RD) contours in parameter space are shifted by SE!
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But, there are many more parameters in the MSSM!
Dimensionality of the allowed points in parameter space?
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Physics Sommerfeld enhancement in Dark Matter annihilation

Dimensionality of the allowed points in parameter space:

Dimensionality of valid points ≈ 2.4

(as expected/necessary: falling to 0

when # data points ≈ # boxes)

No fine tuning necessary to reproduce correct RD
with MSSM neutralino as DM candidate!
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Conclusions

Conclusions

In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints ⇒ fine tuning?

What is the structure of the allowed areas in parameter space?

Fractal Dimensions can be calculated very easily
(box counting algorithm) for a given set of points

The Fractal Dimension of the allowed region(s) of parameter space
is a good measure for fine tuning

Consistent with standard definition of fine tuning.
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Conclusions

Thank you!
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