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Fractal Dimensions and the coastline of Britain
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Dimensional Analysis Fractal Dimensions

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m o LY
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Dimensional Analysis Fractal Dimensions

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m o LY

This coincides with the “normal life” understanding of dimensionality
for integer d.
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Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m o LY

This coincides with the “normal life” understanding of dimensionality
for integer d. For Fractals, d is not an integer.
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Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m oc LY

This coincides with the “normal life” understanding of dimensionality
for integer d. For Fractals, d is not an integer.
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Dimensional Analysis Fractal Dimensions

Fractal Dimensions

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship
between its mass m and length L is m oc LY

This coincides with the “normal life” understanding of dimensionality
for integer d. For Fractals, d is not an integer.
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mass triples when size doubles
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How long is the coastline of Britain ?
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Dimensional Analysis How long is the coastline of Britain ?

How long is the coastline of Britain 7

|

That depends on the length of the ruler that we use! )
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Dimensional Analysis How long is the coastline of Britain ?

How long is the coastline of Britain 7

—_— =

Unit 200km: ca. 2400km, Unit 50km: ca. 3400km. J
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Dimensional Analysis How long is the coastline of Britain ?

The Box Counting algorithm
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Dimensional Analysis How long is the coastline of Britain ?

The Box Counting algorithm
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2D: For solid objects, the fill ratio will approach a constant,

for a line, it will approach 1/n (nx n boxes). For a fractal, ...

J

Stefan Recksiegel (TUM)

Using dimensional analysis as a measure of fine tuning



Dimensional Analysis How long is the coastline of Britain ?

..., we can make a logarithmic plot of the fill ratio: J
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Dimensional Analysis How long is the coastline of Britain ?

., we can make a logarithmic plot of the fill ratio:
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Dimensional Analysis How long is the coastline of Britain ?

., we can make a logarithmic plot of the fill ratio: J
0
~a— Slope -2, d=0
-2 - ]
/ )
_al Slope -0.75, d=1.25 ]

6L
log(fill rate)

°r # boxes = (272 - o]
0 2 s 5 5 10 12
The dimension of the British coastline is 1.25. )

Benoit Mandelbrot, 1967
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“Fine tuning” in a Toy Model

Let us look at two functions, one well behaved one and one that requires
fine tuning in x to bring the “observable” (i.e. f(x)) into a rather
narrow “experimental window” of 0.5 + 0.005:

sin(x) and sin(1/x) ]
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“Fine tuning” in a Toy Model
Let us look at two functions, one well behaved one and one that requires

fine tuning in x to bring the “observable” (i.e. f(x)) into a rather
narrow “experimental window” of 0.5 + 0.005:

sin(x) and sin(1/x) ]
Traditional definition of fine tuning: Barbieri-Guidice NPB 306:63(1988)
: x 00?(x)
BGflneO(X) = ET
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Let us look at two functions, one well behaved one and one that requires

fine tuning in x to bring the “observable” (i.e. f(x)) into a rather
narrow “experimental window” of 0.5 + 0.005:

sin(x) and sin(1/x) ]
Traditional definition of fine tuning: Barbieri-Guidice NPB 306:63(1988)
: x 002%(x)
BGflneO(X) = &T

Analytically very easy to calculate, but which value of x to choose?
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“Fine tuning” in a Toy Model
Let us look at two functions, one well behaved one and one that requires

fine tuning in x to bring the “observable” (i.e. f(x)) into a rather
narrow “experimental window” of 0.5 + 0.005:

sin(x) and sin(1/x) ]
Traditional definition of fine tuning: Barbieri-Guidice NPB 306:63(1988)
: x 002%(x)
BGflneO(X) = &T

Analytically very easy to calculate, but which value of x to choose?

For sin x, use x = sin"1 0.5, this way BGfinegnx = 1.81. Forsinl/x, ...
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Dimensional Analysis Fine tuning in
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Dimensional Analysis Fine tuning in a Toy Model

902%(x)
[3]

X

Average of BGfineg(,) = over the generated “valid” points:

X
02
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Dimensional Analysis Fine tuning in a Toy Model

X 602(X)
0?2 0x

Average of BGfineg(,) = over the generated “valid” points:

BGfineginx = 1.81 (= naive result), BGfineg,1/, = 93.58. J
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Dimensional Analysis Fine tuning in a Toy Model

Average of BGfineg(,) = &ao;fx) over the generated “valid” points:
BGfineginx = 1.81 (= naive result), BGfineg,1/, = 93.58. J

Our proposal: Much easier to calculate (does not depend on O —
multiple observables!) and at least as instructive:

Box-counting dimension of valid points

No fine tuning: dim ~ # parameters <> Extreme fine tuning: dim ~ 0
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Dimensional Analysis Fine tuning in a Toy Model

What are the dimensionalities of the allowed ranges for x? J
sin x sin 1/X
o 0
Ry resolution of finite error:
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Dimensional Analysis Fine tuning in a Toy Model

What are the dimensionalities of the allowed ranges for x? J
sin x sin 1/X
0 0
- ‘-‘H\.‘__ resolution of finite error:
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For sin(x) we observe a constant
fraction of filled boxes over
several orders of magnitude in
box size.
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What are the dimensionalities of the allowed ranges for x? J
sin x sin 1/X
0 0
- ‘-‘H\.‘__ resolution of finite error:
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For sin(x) we observe a constant
fraction of filled boxes over
several orders of magnitude in
box size. = No fine tuning
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Dimensional Analysis Fine tuning in a Toy Model

What are the dimensionalities of the allowed ranges for x? J
sin x sin 1/X
0 0= <
: — resolution of finite error:
. \ H“”x.ﬁ \ dim=1
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For sin(1/x) we observe a falling
fraction of filled boxes for
increasing numbers of boxes
corresponding to dim ~ 0.5.

For sin(x) we observe a constant
fraction of filled boxes over
several orders of magnitude in
box size. = No fine tuning

Stefan Recksiegel (TUM) Using dimensional analysis as a measure of fine tuning



Dimensional Analysis Fine tuning in a Toy Model

What are the dimensionalities of the allowed ranges for x? J
sin x sin 1/X
0 0
"~ R resolution of finite error:
S\ HH‘““H.‘H dim=1
— T b -5k T
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For sin(1/x) we observe a falling
fraction of filled boxes for
increasing numbers of boxes
corresponding to dim ~ 0.5.

= Moderate fine tuning

For sin(x) we observe a constant
fraction of filled boxes over
several orders of magnitude in
box size. = No fine tuning
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Effective dim. of the parameter space of SM4 and LHT

Distrib. of valid points in SM4 ... ... and in LHT
200 0p-
10F

b 8 10 1 1 1 1 1 1 1

a0l L 42 3 4 5 6 7
- _1wf //
—40+ T - parameter points
- -2 evenly distributed: -
-60 499512 boxes filled e
" -30F d=0 -
d=0 7 .

—anf : 40|
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Physics Examples: SM 4G / Littlest Higgs with T-parity

Effective dim. of the parameter space of SM4 and LHT

Distrib. of valid points in SM4 ...

20+
. . . . .
[i] il 10
TN
a0l i S
—60[
o
d=0
_8of

20

.and in LHT

-20

-30

—40

parameter points
evenly distributed:

499512 boxes filled =4
d=0

In SM4, the valid points in parameter space lie on a rather connected
structure in 10-dim. space with an effective dimension of ~ 3.
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Physics Examples: SM 4G / Littlest Higgs with T-parity

Effective dim. of the parameter space of SM4 and LHT

Distrib. of valid points in SM4 ...
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In SM4, the valid points in parameter space lie on a rather connected

20F

.and in LHT

_20fF
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—40f

parameter points
evenly distributed:
499/512 hoxes filled

structure in 10-dim. space with an effective dimension of ~ 3.

In LHT, the valid points are single points distributed evenly over the

parameter space
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Effective dim. of the parameter space of SM4 and LHT

Distrib. of valid points in SM4 ... ... and in LHT
sl 20
10}
2 4 6‘ il 10
b 5 PR T T
d-28 = . -lof /s .

—40 20 parameter points

- P evenly distributed: .

;17 499/512 boxes filled ¥
- _30f d=0 -

—anf —a0f

In SM4, the valid points in parameter space lie on a rather connected
structure in 10-dim. space with an effective dimension of ~ 3.

In LHT, the valid points are single points distributed evenly over the
parameter space, the exp. constraints are fulfilled by fine tuning the
mixing parameters and the mirror fermion masses.

Feldmann/Promberger/SR EPJC 72:1867 (2012)
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in
Dark Matter annihilation
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Physics

Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV)
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density Qpph? planck = 0.1187(17).

X J\fd.lrv
x°
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV)
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density Qpph? planck = 0.1187(17).

If there are other states close (in mass)
to this dark matter candidate,
resonant annihilation can change the
relic density contribution significantly.

J\fd,z,y
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV)
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density Qpph? planck = 0.1187(17).

If there are other states close (in mass)  y0__ % J\’hd'z'y

to this dark matter candidate, W oy
resonant annihilation can change the ,
relic density contribution significantly. x o

This is called Sommerfeld Enhancement.
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Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV)
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density Qpph? planck = 0.1187(17).

If there are other states close (in mass)  y0__ % J\’hd'z'y

to this dark matter candidate, W oy
resonant annihilation can change the ,
relic density contribution significantly. x o

This is called Sommerfeld Enhancement.
Sommerfeld (1931);
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Physics Sommerfeld enhancement in Dark Matter annihilation

Sommerfeld enhancement in Dark Matter annihilation

WIMP miracle: A weakly interacting massive particle of mass O(1TeV)
(e.g. MSSM neutralino), thermally produced in the early universe and then
frozen out could give the correct relic density Qpph? planck = 0.1187(17).

If there are other states close (in mass)  y0__ % J\’hd'z'y

to this dark matter candidate, W oy
resonant annihilation can change the ,
relic density contribution significantly. x o

This is called Sommerfeld Enhancement.
Sommerfeld (1931); Hisano et al. (2004), ...
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In the MSSM: parameters My, Mo, M3, i1, Ma, Mg, tang, . ..

Stefan Recksiegel (TUM) Using dimensional analysis as a measure of fine tuning



Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters My, Mo, M3, i1, Ma, Mg, tang, . ..
Allowed (correct RD) contours in parameter space are shifted by SE!
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Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters My, Mo, M3, 11, Ma, Mg, tang,
Allowed (correct RD) contours in parameter space are shifted by SE!

My=12 TeV, My=2M,, Ms=10 TeV; tanB=15

400+ f’
_ 300 O
>
[
) .
S 2000
3 i
100 |
Qoo 1500 2000 2500 3000 3500

M, [GeV]
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Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters My, Mo, M3, 11, Ma, Mg, tang,
Allowed (correct RD) contours in parameter space are shifted by SE!

Ms=12 TeV, My=2M,, Ms=10 TeV; tanp=15 My=12 TeV, M1=2My, Ms=10 TeV: tanp=15
Ty i i Perturbative | | Sommerfeld
400+ E | I: :" 400k i enhanced |
.
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300F 004 1
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| 006 | ! ( P )
% AT 0.16 ,, " 0.34 5
3 2000 ) O % T 0l 1
= A S Lol
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100F | o) / Perturbative 1 100} 1
1 i/ /
// //l /// r /'/’v//
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M, [GeV]
Beneke/Bharucha/Hryczuk/Ruiz-Femenia /SR (2016)
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Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters My, Mo, M3, i1, Ma, Mg, tang, . ..
Allowed (correct RD) contours in parameter space are shifted by SE!

M=12 TeV, M;=2M,, M4,=10 TeV; tan=15

Mg=12 TeV, M1=2M,, M4=10 TeV; tanB=15
TR v v :‘ Perturbative ' Sommerfeld

400( :’ ] 400k enhanced |

_, 300} 0 300( 1
N = ol
[~ =

i 200 :, T 200] 1

100 100} 1

N S AN, L 0 LA i L :
1%00 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500
M, [GeV]
M, [GeV]

Beneke/Bharucha/Hryczuk/Ruiz-Femenia /SR (2016)

But, there are many more parameters in the MSSM!
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Physics Sommerfeld enhancement in Dark Matter annihilation

In the MSSM: parameters My, Mo, M3, i1, Ma, Mg, tang, . ..
Allowed (correct RD) contours in parameter space are shifted by SE!

M=12 TeV, M;=2M,, M4,=10 TeV; tan=15

Mg=12 TeV, M1=2M,, M4=10 TeV; tanB=15
T v o :‘ Perturbative | Sommerfeld

400( :’ ] 400k | enhanced |

_, 300} 0 300( 1
~ S S
[~ =

i 200 :, T 200] 1

100 100} 1

1 & i I /I y 1 0 L F d # Il L
1%00 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000 3500
M, [GeV]

M, [GeV]

Beneke/Bharucha/Hryczuk/Ruiz-Femenia /SR (2016)

But, there are many more parameters in the MSSM!
Dimensionality of the allowed points in parameter space?
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Physics Sommerfeld enhancement in Dark Matter annihilation

Dimensionality of the allowed points in parameter space:

Logy fill ratio]

d=2.35, no fine tuning

d=0, resolve individual paints

Log2 = Ibm'es per var] T
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Physics Sommerfeld enhancement in Dark Matter annihilation

Dimensionality of the allowed points in parameter space:

Logy fill ratio]

d=2.35, no fine tuning

\\\f\ Dimensionality of valid points ~ 2.4

-
d=0, resolve individual peints 1
s

Log2 [#2 boxes per var] -
0 2 4 [ 8 10
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Physics

Sommerfeld enhancement in Dark Matter annihilation

Dimensionality of the allowed points in parameter space:

Logy fill ratio]

d=2.35, no fine tuning

7

d=0, resolve individual paints

Log2 = Ibm'es per var] T
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Dimensionality of valid points ~ 2.4

(as expected/necessary: falling to 0

when # data points = # boxes)
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Physics Sommerfeld enhancement in Dark Matter annihilation

Dimensionality of the allowed points in parameter space:

Logy fill ratio]

d=2.35, no fine tuning

Dimensionality of valid points ~ 2.4

'\4\\f\
p \ (as expected/necessary: falling to 0
/ . when # data points = # boxes)

-20 d=0, resolve individual paints
.

Log2 = Ibm'es per var] T
8 10

No fine tuning necessary to reproduce correct RD
with MSSM neutralino as DM candidate! J
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Conclusions
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Conclusions

Conclusions

@ In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints
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Conclusions

Conclusions

@ In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints = fine tuning?
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Conclusions

Conclusions

@ In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints = fine tuning?

@ What is the structure of the allowed areas in parameter space?
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Conclusions

Conclusions

@ In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints = fine tuning?

@ What is the structure of the allowed areas in parameter space?

o Fractal Dimensions can be calculated very easily
(box counting algorithm) for a given set of points
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Conclusions

Conclusions

@ In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints = fine tuning?

@ What is the structure of the allowed areas in parameter space?

o Fractal Dimensions can be calculated very easily
(box counting algorithm) for a given set of points

e The Fractal Dimension of the allowed region(s) of parameter space
is a good measure for fine tuning
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In the study of models of New Physics, we want to know how
natural it is to fulfil observational constraints = fine tuning?

@ What is the structure of the allowed areas in parameter space?

Fractal Dimensions can be calculated very easily
(box counting algorithm) for a given set of points

The Fractal Dimension of the allowed region(s) of parameter space
is a good measure for fine tuning

o Consistent with standard definition of fine tuning.
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