Using dimensional analysis as a measure of fine tuning

Stefan Recksiegel (TUM) Tangier, September 2019

Dimensional Analysis

- Fractal Dimensions
- How long is the coastline of Britain ?
- Fine tuning in a Toy Model

2 Physics

- Examples: SM with 4 generations and Littlest Higgs with T-parity
- Sommerfeld enhancement in Dark Matter annihilation

3 Conclusions

Dimensional Analysis: Fractal Dimensions and the coastline of Britain

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between its mass m and length L is $m \propto L^d$

This coincides with the **"normal life" understanding** of dimensionality for **integer** *d*.

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between its mass m and length L is $m \propto L^d$

This coincides with the "normal life" understanding of dimensionality for integer d. For Fractals, d is not an integer.

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between its mass m and length L is $m \propto L^d$

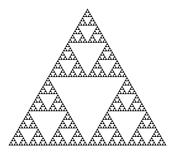
This coincides with the **"normal life" understanding** of dimensionality for **integer** d. For **Fractals**, d is not an integer.

E.g. Sierpínski triangle

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between its mass m and length L is $m \propto L^d$

This coincides with the **"normal life" understanding** of dimensionality for **integer** d. For **Fractals**, d is not an integer.



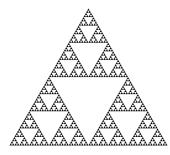
E.g. Sierpínski triangle

mass triples when size doubles $\rightarrow d = \log(3)/\log(2) \approx 1.585$

Haussdorff dimension

A geometric shape has Haussdorff dimension d if the relationship between its mass m and length L is $m \propto L^d$

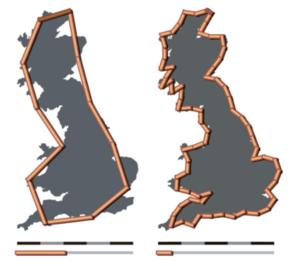
This coincides with the **"normal life" understanding** of dimensionality for **integer** d. For **Fractals**, d is not an integer.



E.g. Sierpínski triangle: mass triples when size doubles $\rightarrow d = log(3)/log(2) \approx 1.585$

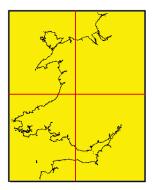
That depends on the length of the ruler that we use!

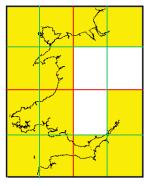
That depends on the length of the ruler that we use!

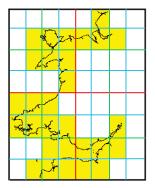


Unit 200km: ca. 2400km, Unit 50km: ca. 3400km.

The Box Counting algorithm







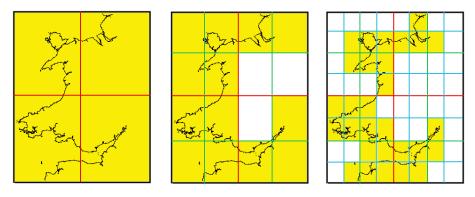
1/1 4/4

13/16

28/64

2D: For solid objects, the fill ratio will approach a constant, for a line, it will approach 1/n ($n \times n$ boxes). For a fractal, ...

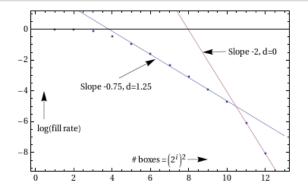
The Box Counting algorithm



for a line, it will approach 1/n ($n \times n$ boxes). For a fractal, ...

..., we can make a logarithmic plot of the fill ratio:

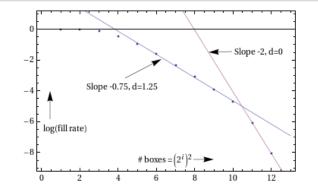
..., we can make a logarithmic plot of the fill ratio:



The dimension of the British coastline is 1.25.

Benoît Mandelbrot, 1967

..., we can make a **logarithmic plot** of the fill ratio:



The dimension of the British coastline is 1.25.

Benoît Mandelbrot, 1967

Let us look at two functions, one *well behaved* one and one that requires fine tuning in x to bring the "observable" (i.e. f(x)) into a rather narrow "experimental window" of 0.5 ± 0.005 :

 sin(x)	and	sin(1/x)

Let us look at two functions, one *well behaved* one and one that requires fine tuning in x to bring the "observable" (i.e. f(x)) into a rather narrow "experimental window" of 0.5 ± 0.005 :

	sin(x)	and	sin(1/x)	
Traditional definition of fine tuning:			Barbieri-Guidice NPB 3	306:63(1988)
$BGfine_{\mathcal{O}(x)} =$			$\frac{1}{D^2} \frac{\partial O^2(x)}{\partial x}$	

Analytically very easy to calculate, but which value of x to choose?

Let us look at two functions, one *well behaved* one and one that requires fine tuning in x to bring the "observable" (i.e. f(x)) into a rather narrow "experimental window" of 0.5 ± 0.005 :

	sin(x)	and	$\sin(1/x)$	J
Traditional definition of fine tuning:			Barbieri-Guidice NPB 306:63(1988)
	BGfine ₍	$D(x) = \left \frac{1}{C} \right $	$\frac{1}{2} \frac{\partial O^2(x)}{\partial x}$	

Analytically very easy to calculate, but which value of x to choose?

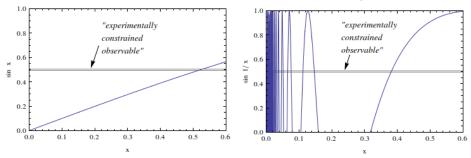
For sin x, use $x = \sin^{-1} 0.5$, this way BGfine_{sin x} = 1.81. For sin 1/x, ...

Let us look at two functions, one *well behaved* one and one that requires fine tuning in x to bring the "observable" (i.e. f(x)) into a rather narrow "experimental window" of 0.5 ± 0.005 :

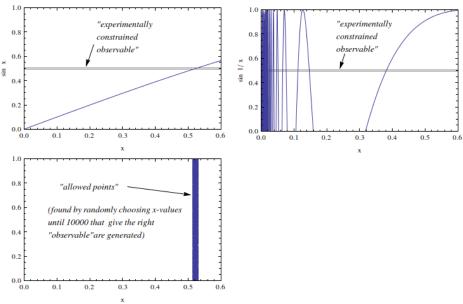
	sin(x)	and	$\sin(1/x)$	
Traditional definition of fine tuning:			Barbieri-Guidice NPB 306:	63(1988)
	BGfine _C	$D(x) = \left \frac{x}{C} \right $	$\frac{1}{D^2} \frac{\partial O^2(x)}{\partial x}$	

Analytically very easy to calculate, but which value of x to choose?
For sin x, use
$$x = sin^{-1} 0.5$$
, this way BGfine_{sin x} = 1.81. For sin 1/x, ...

 $\sin 1/x$

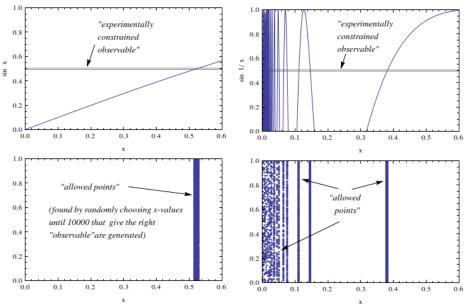


$\sin x$



Stefan Recksiegel (TUM)

$\sin x$



Average of BGfine_{O(x)} = $\left| \frac{x}{O^2} \frac{\partial O^2(x)}{\partial x} \right|$ over the generated "valid" points:

BGfine_{sin x} = 1.81 (= naïve result), BGfine_{sin 1/x} = 93.58.

Average of BGfine_{O(x)} = $\left| \frac{x}{O^2} \frac{\partial O^2(x)}{\partial x} \right|$ over the generated "valid" points:

BGfine_{sin x} = 1.81 (= naïve result), BGfine_{sin 1/x} = 93.58.

Our proposal: Much easier to calculate (does not depend on $O \rightarrow$ multiple observables!) and at least as instructive:

Box-counting dimension of valid points

No fine tuning: dim \approx # parameters \leftrightarrow Extreme fine tuning: dim \approx 0

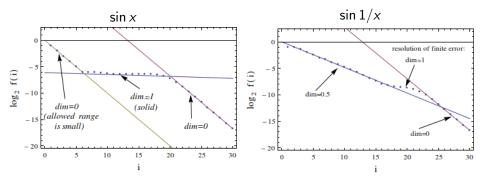
Average of BGfine_{O(x)} = $\left| \frac{x}{O^2} \frac{\partial O^2(x)}{\partial x} \right|$ over the generated "valid" points:

BGfine_{sin x} = 1.81 (= naïve result), BGfine_{sin 1/x} = 93.58.

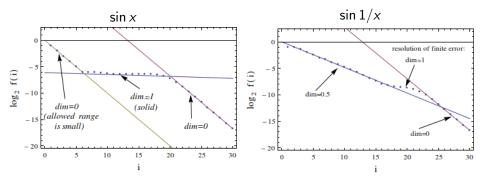
Our proposal: Much easier to calculate (does not depend on $O \rightarrow$ multiple observables!) and at least as instructive:

Box-counting dimension of valid points					
No fine tuning: dim $\approx \# {\rm parameters}$	\leftrightarrow	Extreme fine tuning: dim \approx 0	כ		

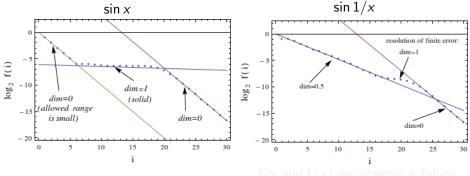
What are the **dimensionalities** of the allowed ranges for *x*?



For sin(x) we observe a constant fraction of filled boxes over several orders of magnitude in box size. What are the **dimensionalities** of the allowed ranges for *x*?



For sin(x) we observe a constant fraction of filled boxes over several orders of magnitude in box size. What are the **dimensionalities** of the allowed ranges for *x*?



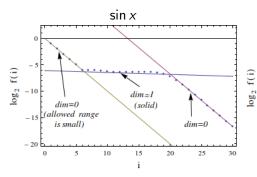
For sin(x) we observe a constant fraction of filled boxes over several orders of magnitude in box size. \Rightarrow **No fine tuning** For sin(1/x) we observe a falling fraction of filled boxes for increasing numbers of boxes corresponding to dim ≈ 0.5 .

- 10

-15

-20

What are the **dimensionalities** of the allowed ranges for *x*?



For sin(x) we observe a constant fraction of filled boxes over several orders of magnitude in box size. \Rightarrow **No fine tuning** For sin(1/x) we observe a falling fraction of filled boxes for increasing numbers of boxes corresponding to dim ≈ 0.5 .

15

 $\sin 1/x$

dim=0.5

5

10

resolution of finite error: dim≈1

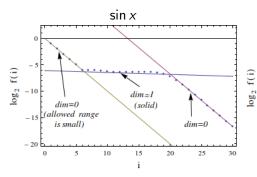
dim=0

25

30

- 10

What are the **dimensionalities** of the allowed ranges for *x*?



For sin(x) we observe a constant fraction of filled boxes over several orders of magnitude in box size. \Rightarrow **No fine tuning** For $\sin(1/x)$ we observe a falling fraction of filled boxes for increasing numbers of boxes corresponding to dim ≈ 0.5 . \Rightarrow Moderate fine tuning

 $\sin 1/x$

dim=0.5

resolution of finite error: dim≈1

Physics

parameter points

evenly distributed: 499/512 boxes filled

d = 0

Effective dim. of the parameter space of SM4 and LHT Distrib. of valid points in SM4 ... and in LHT 20-20 d = 2.9 d = 2.9 d = 3.9 d = 3.9

-20

-30

-40

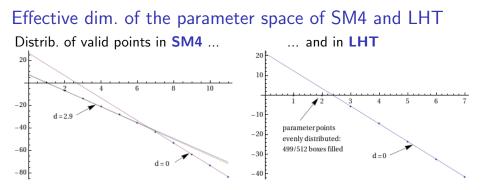
In SM4, the valid points in parameter space lie on a rather connected structure in 10-dim. space with an effective dimension of \sim 3.

d = 0

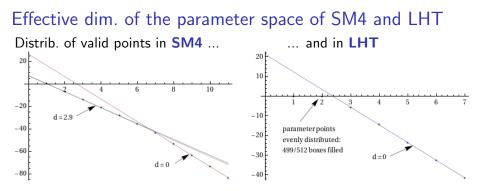
-40

-60

-80

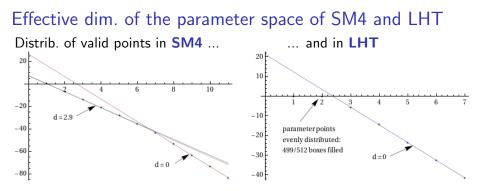


In SM4, the valid points in parameter space lie on a rather connected structure in 10-dim. space with an effective dimension of \sim 3. In LHT, the valid points are single points distributed evenly over the parameter space



In SM4, the valid points in parameter space lie on a rather connected structure in 10-dim. space with an **effective dimension** of \sim 3. In LHT, the valid points are single points **distributed evenly** over the parameter space the explorementation are fulfilled by fine tuning the mixing parameters and the mirror fermion masses.

Feldmann/Promberger/SR EPJC 72:1867 (2012)

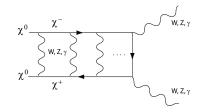


In SM4, the valid points in parameter space lie on a rather connected structure in 10-dim. space with an effective dimension of \sim 3. In LHT, the valid points are single points distributed evenly over the parameter space, the exp. constraints are fulfilled by fine tuning the mixing parameters and the mirror fermion masses.

Feldmann/Promberger/SR EPJC 72:1867 (2012)

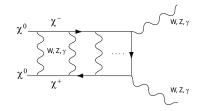
WIMP miracle: A weakly interacting massive particle of mass O(1 TeV) (e.g. MSSM neutralino), thermally produced in the early universe and then frozen out could give the correct relic density $\Omega_{DM}h^2_{\text{Planck}} = 0.1187(17)$.

If there are other states close (in mass) to this **dark matter candidate**, resonant annihilation can change the relic density contribution significantly.



WIMP miracle: A weakly interacting massive particle of mass O(1 TeV) (e.g. MSSM neutralino), thermally produced in the early universe and then frozen out could give the correct relic density $\Omega_{DM}h^2_{\text{ Planck}} = 0.1187(17)$.

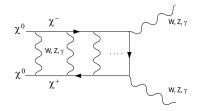
If there are other states close (in mass) to this **dark matter candidate**, resonant annihilation can change the relic density contribution significantly.



This is called Sommerfeld Enhancement.

WIMP miracle: A weakly interacting massive particle of mass O(1 TeV) (e.g. MSSM neutralino), thermally produced in the early universe and then frozen out could give the correct relic density $\Omega_{DM}h^2_{\text{Planck}} = 0.1187(17)$.

If there are other states close (in mass) to this **dark matter candidate**, resonant annihilation can change the relic density contribution significantly.

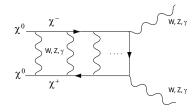


This is called **Sommerfeld Enhancement**.

Sommerfeld (1931);

WIMP miracle: A weakly interacting massive particle of mass O(1 TeV) (e.g. MSSM neutralino), thermally produced in the early universe and then frozen out could give the correct relic density $\Omega_{DM}h^2_{\text{Planck}} = 0.1187(17)$.

If there are other states close (in mass) to this **dark matter candidate**, resonant annihilation can change the relic density contribution significantly.

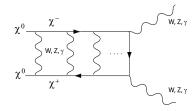


This is called Sommerfeld Enhancement.

Sommerfeld (1931); Hisano et al. (2004),

WIMP miracle: A weakly interacting massive particle of mass O(1 TeV) (e.g. MSSM neutralino), thermally produced in the early universe and then frozen out could give the correct relic density $\Omega_{DM}h^2_{\text{Planck}} = 0.1187(17)$.

If there are other states close (in mass) to this **dark matter candidate**, resonant annihilation can change the relic density contribution significantly.



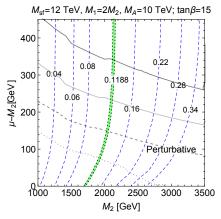
This is called Sommerfeld Enhancement.

Sommerfeld (1931); Hisano et al. (2004), ...

In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_\beta, \ldots$

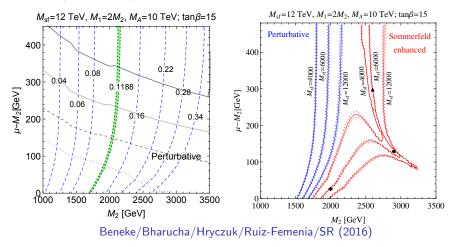
Allowed (correct RD) **contours** in parameter space are **shifted** by SE!

In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_\beta, \ldots$ Allowed (correct RD) **contours** in parameter space are **shifted** by SE! In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_\beta, \ldots$ Allowed (correct RD) contours in parameter space are shifted by SE!



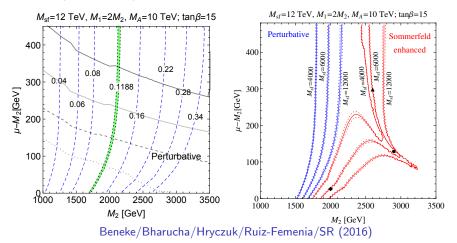
Beneke/Bharucha/Hryczuk/Ruiz-Femenia/SR (2016)

In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_{\beta}, \ldots$ Allowed (correct RD) **contours** in parameter space are **shifted** by SE!

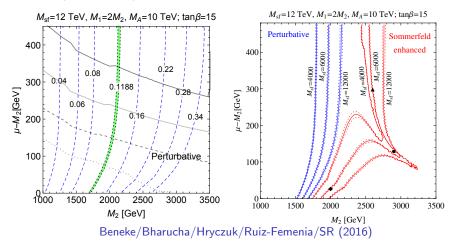


But, there are many **more parameters** in the MSSM!

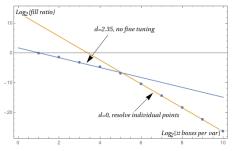
In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_{\beta}, \ldots$ Allowed (correct RD) **contours** in parameter space are **shifted** by SE!



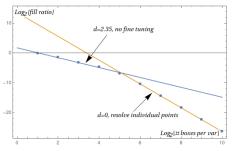
But, there are many more parameters in the MSSM! Dimensionality of the allowed points in parameter space? In the **MSSM**: parameters $M_1, M_2, M_3, \mu, M_A, M_{sf}, \tan_{\beta}, \ldots$ Allowed (correct RD) **contours** in parameter space are **shifted** by SE!



But, there are many **more parameters** in the MSSM! **Dimensionality** of the allowed points in **parameter space**?

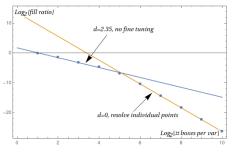


Dimensionality of valid points ≈ 2.4



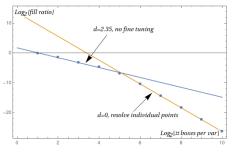
Dimensionality of valid points ≈ 2.4

(as expected/necessary: falling to 0 when # data points pprox # boxes)



Dimensionality of valid points ≈ 2.4 (as expected/necessary: falling to 0 when # data points $\approx \#$ boxes)

No fine tuning necessary to reproduce correct RD with MSSM neutralino as DM candidate!



Dimensionality of valid points ≈ 2.4 (as expected/necessary: falling to 0 when # data points $\approx \#$ boxes)

No fine tuning necessary to reproduce correct RD with MSSM neutralino as DM candidate!

Stefan Recksiegel (TUM) Using dimensional analysis as a measure of fine tuning

 In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints => fine tuning?

- In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints ⇒ fine tuning?
- What is the structure of the allowed areas in parameter space?

- In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints ⇒ fine tuning?
- What is the structure of the allowed areas in parameter space?
- Fractal Dimensions can be calculated very easily (box counting algorithm) for a given set of points

- In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints ⇒ fine tuning?
- What is the structure of the allowed areas in parameter space?
- Fractal Dimensions can be calculated very easily (box counting algorithm) for a given set of points
- The **Fractal Dimension** of the allowed region(s) of parameter space is a good measure for **fine tuning**

- In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints ⇒ fine tuning?
- What is the structure of the allowed areas in parameter space?
- Fractal Dimensions can be calculated very easily (box counting algorithm) for a given set of points
- The Fractal Dimension of the allowed region(s) of parameter space is a good measure for fine tuning
- Consistent with standard definition of fine tuning.

- In the study of models of New Physics, we want to know how natural it is to fulfil observational constraints ⇒ fine tuning?
- What is the structure of the allowed areas in parameter space?
- Fractal Dimensions can be calculated very easily (box counting algorithm) for a given set of points
- The Fractal Dimension of the allowed region(s) of parameter space is a good measure for fine tuning
- Consistent with standard definition of fine tuning.

شكرا بزاف

Thank you!