Naturalness vs Unitarity and BFB: a comparative study in Higgs Triplet Models

Mohamed Chabab

LPHEA, Cadi Ayyad University, Marrakesh, Morocco

Based on PRD 93 (2016) & EPJC 78 (2018) (in collaboration with Peyranere and Rahili)

26 septembre 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	Results & Discussions	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	

Plan

- ► Type II Seesaw Model (HTM2)
- ► Higgs Triplet Model (HTM0)
- Model Description
- ► The Higgs spectrum
- From Unitarity to Naturalness
- Veltman Conditions (VC)
- ► RESULTS
- Model parameter space
- Model Higgs masses

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC) 00	Results & Discussions 00000	Review of the HTM0 model 00	Veltman conditions
TYPE II SEESAW MODEL				

Implement a scalar field Δ with hypercharge y = 2 in Standard Model (Perez et al. PRD 78 (2008) & Arhrib et al. PRD 84 (2011)) :

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + Tr(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) - V(H,\Delta) + \mathcal{L}_{\text{Yukawa}}$$

The potential $V(H, \Delta)$ reads as,

$$V(H,\Delta) = -m_{H}^{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^{2} + M_{\Delta}^{2}Tr(\Delta^{\dagger}\Delta) + [\mu(H^{T}i\sigma^{2}\Delta^{\dagger}H) + h.c] + \lambda_{1}(H^{\dagger}H)Tr(\Delta^{\dagger}\Delta) + \lambda_{2}(Tr\Delta^{\dagger}\Delta)^{2} + \lambda_{3}Tr(\Delta^{\dagger}\Delta)^{2} + \lambda_{4}H^{\dagger}\Delta\Delta^{\dagger}H$$

The Triplet Δ and Higgs doublet *H* are represented by :

$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix} \text{ and } H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

with $\delta^0 = \frac{1}{\sqrt{2}} (v_t + \xi^0 + iZ_2)$ and $\phi^0 = \frac{1}{\sqrt{2}} (v_d + h + iZ_1).$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ の へ (P_{size= 3/25})

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC) 00	Results & Discussions 00000	Review of the HTM0 model 00	Veltman conditions
HTM2 Higgs spectrum				

After EWSB, HTM2 Higgs spectrum consists of : two CP_{even} neutral scalars (h^0, H^0) , one neutral pseudoscalar A^0 and a pair of simply-, doubly- charged Higgs bosons $(H^{\pm}, H^{\pm\pm})$,

$$\begin{split} m_{h^0} &= \frac{1}{2} (A + C - \sqrt{(A - C)^2 + 4B^2}) \\ m_{H^0} &= \frac{1}{2} (A + C + \sqrt{(A - C)^2 + 4B^2}) \\ m_{H^{\pm\pm}}^2 &= \frac{\sqrt{2\mu}v_d^2 - \lambda_4 v_d^2 v_t - 2\lambda_3 v_t^3}{2v_t} \\ m_{H^{\pm\pm}}^2 &= \frac{(v_d^2 + 2v_t^2) \left[2\sqrt{2\mu} - \lambda_4 v_t\right]}{4v_t} \\ m_{A^0}^2 &= \frac{\mu(v_d^2 + 4v_t^2)}{\sqrt{2}v_t} \end{split}$$

$$A = \frac{\lambda}{2}v_d^2, \ B = v_d(-\sqrt{2}\mu + (\lambda_1 + \lambda_4)v_t), \ C = \frac{\sqrt{2}\mu v_d^2 + 4(\lambda_2 + \lambda_3)v_t^3}{2v_t}$$

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions	
0000	00	00000	00		
From Unitarity to Naturalness Constraints					

HTM2 Higgs potential parameters must obey several constraints originating from theoretical requirements :

► <u>BFB :</u>

$$\begin{split} \lambda &\geq 0 \quad \& \quad \lambda_2 + \lambda_3 \geq 0 \quad \& \quad \lambda_2 + \frac{\lambda_3}{2} \geq 0 \\ \& \quad \lambda_1 + \sqrt{\lambda(\lambda_2 + \lambda_3)} \geq 0 \quad \& \quad \lambda_1 + \lambda_4 \sqrt{\lambda(\lambda_2 + \lambda_3)} \geq 0 \\ \& \quad \lambda_3 \sqrt{\lambda} &\leq |\lambda_4| \sqrt{\lambda_2 + \lambda_3} \quad \text{or} \quad 2\lambda_1 + \lambda_4 + \sqrt{(\lambda - \lambda_4^2)(2\frac{\lambda_2}{\lambda_3} + 1)} \geq 0 \end{split}$$

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions	
0000	00	00000	00		
From Unitarity to Naturalness Constraints					

HTM2 Higgs potential parameters must obey several constraints originating from theoretical requirements :

► <u>BFB :</u>

$$\begin{split} \lambda &\geq 0 \quad \& \quad \lambda_2 + \lambda_3 \geq 0 \quad \& \quad \lambda_2 + \frac{\lambda_3}{2} \geq 0 \\ \& \quad \lambda_1 + \sqrt{\lambda(\lambda_2 + \lambda_3)} \geq 0 \quad \& \quad \lambda_1 + \lambda_4 \sqrt{\lambda(\lambda_2 + \lambda_3)} \geq 0 \\ \& \quad \lambda_3 \sqrt{\lambda} &\leq |\lambda_4| \sqrt{\lambda_2 + \lambda_3} \quad \text{or} \quad 2\lambda_1 + \lambda_4 + \sqrt{(\lambda - \lambda_4^2)(2\frac{\lambda_2}{\lambda_3} + 1)} \geq 0 \end{split}$$

► Unitarity :

5/25

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions	
0000	00	00000	00		
From Unitarity to Naturalness Constraints					

Other constraints :

- ρ parameter : $\rho \simeq 1 2\frac{v_t^2}{v_d^2}$. From Precision measurements : $|\delta \rho| \le 10^{-3} \rightarrow v_t \le 5 \text{ GeV}$.
- μ constraints : $\mu > 0,...$
- Experimental mass limits for the Heavy Higgs bosons.

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions
0000	•0	00000	00	
VC in HTM2				

Veltman conditions means that the quadratic divergencies of the two possible tadpoles T_{h^0} and T_{H^0} of the CP-even neutral scalar fields vanish.

► Combinations s_αT_{h⁰} + c_αT_{H⁰} and c_αT_{h⁰} - s_αT_{H⁰} induce nice simplification, that ends up with short expressions :

$$T_{d} = -2Tr(I_{n})\Sigma_{f}\frac{m_{f}^{2}}{v_{d}^{2}} + 3(\lambda + 2\lambda_{1} + \lambda_{4}) + 2\frac{m_{W}^{2}}{v_{sm}^{2}}(\frac{1}{c_{w}^{2}} + 2)$$
$$T_{t} = 4\frac{m_{W}^{2}}{v_{sm}^{2}}(\frac{1}{c_{w}^{2}} + 1) + (2\lambda_{1} + 8\lambda_{2} + 6\lambda_{3} + \lambda_{4})$$

Here $c_w = cos(\theta_{Weinberg})$, $v_{SM}^2 = 246 \text{ GeV}$.

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	Results & Discussions	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	
VC in HTM2				

$$T_{d} = -2Tr(I_{n})\Sigma_{f}\frac{m_{f}^{2}}{v_{d}^{2}} + 3(\lambda + 2\lambda_{1} + \lambda_{4}) + 2\frac{m_{W}^{2}}{v_{sm}^{2}}(\frac{1}{c_{w}^{2}} + 2)$$
$$T_{t} = 4\frac{m_{W}^{2}}{v_{sm}^{2}}(\frac{1}{c_{w}^{2}} + 1) + (2\lambda_{1} + 8\lambda_{2} + 6\lambda_{3} + \lambda_{4})$$

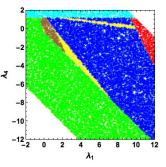
Veltman Condition in SM : remove λ_1 and λ_4 in formula T_d (M.C. Peyranere et al. PLB 260 (1991)).

General Motivations	NaturalnessVeltman Conditions (VC) 00	RESULTS & DISCUSSIONS •0000	Review of the HTM0 model 00	Veltman conditions
Implications for the parame	eter space			

We show the impact of VC on the parameter space : Allowed regions in (λ_1, λ_4) plan.

(cyan) : Excluded by μ constraints. (red) : Excluded by μ +Unitarity. (green) : Excluded by μ +Unitarity+BFB. (blue) : Excluded by μ +Unitarity+BFB+ $R_{\gamma\gamma}$ (yellow) : Excluded by μ +Unitarity+BFB z $R_{\gamma\gamma} \& T_d = 0 \land T_t = 0.$ (Inputs : $-2 \le \lambda_1 \le 12, \lambda_2 = -\frac{1}{6}, \lambda_3 = \frac{3}{8}, -12 \le \lambda_4 \le 2, v_t = 1$ GeV and $\mu = 1$ GeV.)

Only brown area obeys ALL constraints .



Inclusion of VC clearly reduces the (λ_1, λ_4) parameter space.

General Motivations	NaturalnessVeltman Conditions (VC)	Results & Discussions ○●000	Review of the HTM0 model 00	Veltman conditions	
Implications for the Higgs masses					

As consequence, tadpole additions have strong impact on the Higgs masses.

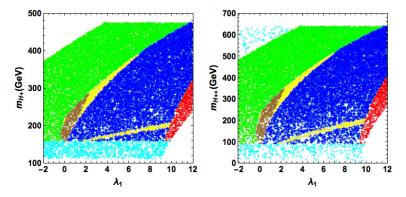
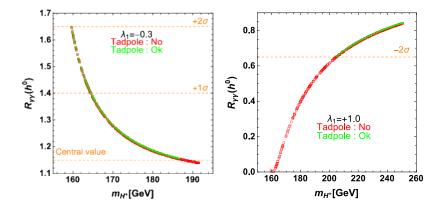


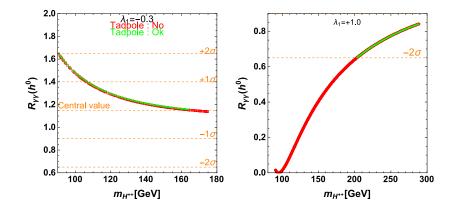
FIGURE – Allowed regions in $(\lambda_1, m_{H^{\pm}})$ (left) and $(\lambda_1, m_{H^{\pm\pm}})$ (right) plans. Inputs : $-2 \le \lambda_1 \le 12$, $\lambda_2 = -\frac{1}{6}$, $\lambda_3 = \frac{3}{8}$, $-12 \le \lambda_4 \le 2$, $v_t = 1$ GeV and $\mu = 1$ GeV.

General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions ○0●00	Review of the HTM0 model 00	Veltman conditions
Implications for the Higgs masses				



< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ ? < ♡_{size=} 11/25

General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions ○00●0	Review of the HTM0 model 00	Veltman conditions
Implications for the Higgs masses				



General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions ○000●	Review of the HTM0 model 00	Veltman conditions
Implications for the Higgs masses				

m_{Φ}	Unitarity	Unitarity + BFB	Unitarity + BFB + $R_{\gamma\gamma}$	Unitarity + BFB + $R_{\gamma\gamma}$ + mVC
H^0	[206.8 - 207.3] GeV	$[206.8 - 207] { m GeV}$	[206.8 - 207] GeV	206.8 GeV
A^0	206.8 GeV	206.8 GeV	206.8 GeV	206.8 GeV
H^{\pm}	$[160 - 474] { m GeV}$	$[160 - 474] { m GeV}$	$[160 - 392] { m GeV}$	$[161 - 288] { m ~GeV}$
$H^{\pm\pm}$	$[90-637]~{ m GeV}$	$[90 - 637] { m GeV}$	$[90 - 513] { m GeV}$	[90 - 351] GeV

TABLE I. Higgs bosons masses allowed intervals in the Higgs triplet model resulting from various constraints, including the modified Veltman conditions

General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions 00000	Review of the HTM0 model	Veltman conditions

Lagrangian of the scalar sector is given by,

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + Tr(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) - V(H,\Delta) + \mathcal{L}_{\text{Yukawa}}$$

with the potential $V(H, \Delta)$,

$$V(H,\Delta) = -m_{H}^{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^{2} - M_{\Delta}^{2}Tr(\Delta^{\dagger}\Delta) + \mu H^{\dagger}\Delta H +\lambda_{1}(H^{\dagger}H)Tr(\Delta^{\dagger}\Delta) + \lambda_{2}(Tr\Delta^{\dagger}\Delta)^{2} + \lambda_{3}Tr(\Delta^{\dagger}\Delta)^{2} +\lambda_{4}H^{\dagger}\Delta^{\dagger}\Delta H$$
(1)

< □ ▶ < / > < 注 ▶ < 注 ▶ ミ ・ ○ ○ ○ size= 14/25

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	

The two Higgs multiplets in components as :

$$\Delta = \frac{1}{2} \begin{pmatrix} \delta^0 & \sqrt{2}\delta^+ \\ \sqrt{2}\delta^- & -\delta^0 \end{pmatrix} \text{ and } H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
(2)

with

$$\phi^0 = \frac{1}{\sqrt{2}}(v_d + h_1 + iz_1)$$
 and $\delta^0 = v_t + h_2$ (3)

After EWSB, denoting the corresponding VEVs as,

$$\langle \Delta \rangle = \frac{1}{2} \begin{pmatrix} v_t & 0\\ 0 & -v_t \end{pmatrix}$$
 and $\langle H \rangle = \begin{pmatrix} 0\\ v_d/\sqrt{2} \end{pmatrix}$ (4)

< □ ▶ < / > < 注 ▶ < 注 ▶ < 注 ♪ < ご → < ?;ize= 15/25

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	Results & Discussions	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	

one finds the conditions :

$$M_{\Delta}^{2} = \frac{\lambda_{a}}{2}v_{d}^{2} - \frac{\mu v_{d}^{2}}{4v_{t}} + \lambda_{b}v_{t}^{2}$$

$$m_{H}^{2} = \frac{\lambda}{4}v_{d}^{2} - \frac{\mu v_{t}}{2} + \frac{\lambda_{a}}{2}v_{t}^{2}$$
(5)
(6)

with $\lambda_a = \lambda_1 + \frac{\lambda_4}{2}$ and $\lambda_b = \lambda_2 + \frac{\lambda_3}{2}$.

$$m_{H^{\pm}}^2 = \frac{(v_d^2 + 4v_t^2)}{4v_t}\mu \tag{7}$$

Main difference with HTM2 is the absence of A^0 and $H^{\pm\pm}$ from HTM0 spectrum.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡_{size=} 16/25

General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions 00000	Review of the HTM0 model ●O	Veltman conditions
Constraints in the HTM0				

The phenomenological analysis is performed in the parameter space scanned by the potential parameters obeying the standard theoretical constraints.

<u>BFB</u> :

As usual, consider the scalar potential at large field values,

$$V^{(4)}(H,\Delta) = \lambda (H^{\dagger}H)^{2}/4 + \lambda_{1}(H^{\dagger}H)Tr(\Delta^{\dagger}\Delta) + \lambda_{2}(Tr\Delta^{\dagger}\Delta)^{2} + \lambda_{3}Tr(\Delta^{\dagger}\Delta)^{2} + \lambda_{4}H^{\dagger}\Delta^{\dagger}\Delta H$$
(8)

Again, BFB requires that $V^{(4)} > 0$ for all directions, consequently translated to :

$$\lambda \ge 0 \& \lambda_b \ge 0$$

$$\& \lambda_a + \sqrt{\lambda \lambda_b} \ge 0$$
(9)
(10)

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @_{size= 17/25}

General Motivations	NaturalnessVeltman Conditions (VC) 00	Results & Discussions 00000	Review of the HTM0 model ○●	Veltman conditions
Constraints in the HTM0				

Unitarity :

$$|\lambda_a| < \kappa \pi \tag{11}$$

$$|\lambda| \le 2\kappa\pi \tag{12}$$

$$|\lambda_b| \le \frac{\kappa}{2}\pi \tag{13}$$

$$|3\lambda + 10\lambda_b \pm \sqrt{(3\lambda - 10\lambda_b)^2 + 48\lambda_a^2}| \le 4\kappa\pi \tag{14}$$

Note that $\kappa = 8$ since the formula $|Re(a_0)| \leq \frac{1}{2}$ has been adopted..

< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽ へで_{size=} 18/25

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	

Collect the quadratic divergencies of the CP-neutral Higgs H^0 and h^0 tadpoles, then derive mVC :

$$T_{d} = v_{d} \left(-2Tr(I_{n}) \Sigma_{f} \frac{m_{f}^{2}}{v_{d}^{2}} + 3(\lambda + \lambda_{a}) + 2\frac{m_{W}^{2}}{v_{sm}^{2}} (\frac{1}{c_{w}^{2}} + 2) \right)$$

and for the triplet :

$$T_t = v_t \left(8 \frac{m_W^2}{v_{sm}^2} + 2\lambda_a + 5\lambda_b \right)$$

with $v = \sqrt{v_d^2 + v_t^2}$ In the parameter space, they vary within the reduced conservative range from 0.1 to 10 GeV. GENERAL MOTIVATIONS Naturalness...Veltman Conditions (VC) **RESULTS & DISCUSSIONS** Review of the HTM0 model Veltman conditions $\delta T = 10$ figure λ, λ, Allowed regions in (λ_a, λ_b) for $\delta T = 5, 10$. orange : Excluded by Unitarity. red : Excluded by Unitarity & BFB.. blue : Excluded by Unitarity & BFB & VC. Green area obeys ALL constraints. (Inputs are : $-5 \le \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \le 5, v_t = 1$ GeV and $2 \le \mu \le 5$ (GeV)

GENERAL MOTIVATIONS	NaturalnessVeltman Conditions (VC)	RESULTS & DISCUSSIONS	Review of the HTM0 model	Veltman conditions
0000	00	00000	00	

- The parameter space dramatically reduced... its extent depends on the value given to the deviation δT.
- Naturalness constraint is stronger than the other theoretical conditions.

This figure displays the deficit of $R_{\gamma\gamma}(h^0)$ as a function of H^{\pm} mass for various values of λ_a , and with $m_{H^0} \ge 140$ GeV.

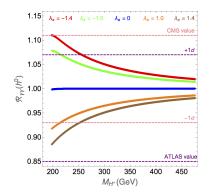


FIGURE – $R_{\gamma\gamma}(h^0)$ vs $m_{H^{\pm}}$ (Inputs : 2.5 $\leq \mu \leq$ 15 (GeV) ($m_{h^0} \approx$ 125 GeV), $\lambda_b = 1$ and $v_t = 1$ GeV)

- As can be seen, a mass about 255 GeV and above is allowed for H^{\pm} within $+1\sigma$ of **ATLAS** data for $\lambda_a = -1.4$. Once λ_a increases, this lower bound decreases consistently to reach its lowest value around ~ 197 GeV.
- ► For **CMS**, this situation is exactly the opposite : only the range $200 \le m_{H^{\pm}} \le 250$ (GeV) is excluded for $\lambda_a = 1.4$. Besides, $R_{\gamma\gamma}(h^0)$ tends towards its standard values for $\lambda_a \ne 0$, and to 1 for large $m_{H^{\pm}}$ whatever the variation of λ_a .

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► Naturalness is stronger than the other theoretical constraints.
- **Drastic reduction** of the parameter space due to mVC.
- ► Important effect for the **upper bound** on *m*_{H^{±±}} which is reduced to 288 GeV (HTM2).
- Similarly, the **upper bound** on $m_{H^{\pm}}$ decreased to 351 GeV.
- ▶ In HTM0, $m_{H^{\pm}}$ lower bound varies between 197 and 255 GeV.

<ロ > < 部 > < 注 > < 注 > < 注 > ○ Q (size= 24/25

Thank you

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >