# Exotic decays of top partner in 2HDM

#### Pr. Bouzid Manaut

Equipe de recherche en physique théorique et matériaux, FP-USMS , Beni Mellal, MOROCCO

#### 1st Mediterranean conference on Higgs Physics MCHP-Tangier

In collaboration with : A. Arhrib, R. Benbrik, R. Enberg, S. Moretti, L. Panizzi and S. Taj

23-26 September 2019

23-26-Sep. 2019, Tangier

# Outline



2 Yukawa interactions

3 Results and discussion



# Motivation for VLQs

- The discovery of the Higgs boson by both ATLAS and CMS in 4th July 2012 is a good opportunity to search for a possible extended EW Syemmetry Breaking sector. Indeed, several theoretical models addressing the hierarchy problem, like Supersymmetry or composite Higgs models which predict the existence of additional Higgs scalars.
- So far, various measurements from experimentals side looks in a very good agreements with the SM predictions. The SM provides an excellent description of fundamental physics at the electroweak scale. It may persist as a good effective field theory.
- Another class of models, called vector-like quark (exotic), requires the presence of fermionic partners of the top-bottom quarks. Aguilar Juan Antonio et al. ,2013

# The Higgs sector beyond the Standard Model

 $\rho$  parameter can be computed easily for any set of complex scalar multiplets with vev  $v_i$ , isospins  $l_i$  and hypercharges  $Y_i$ .

$$\rho = \frac{\sum_{i} v_{i}^{2} \left( 4I_{i}(I_{i}+1) - |Y_{i}|^{2} \right)}{2\sum_{i} v_{i}^{2} |Y_{i}|^{2}} = 1.$$
(1)

$$(2I_i + 1)^2 - 3|Y_i|^2 = 1. \quad \forall i.$$
 (2)

- Neutral singlet :  $(I_i, Y) = (0,0)$
- Doublet :  $(1/2, \pm 1)$  (doublet)
- There are other solutions.

# Two Higgs Doublets Model (2HDM)

We consider two complex doublets  $\Phi_1$  and  $\Phi_2$  with the same hypercharge Y = +1.

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \phi_{i}^{0} \end{pmatrix} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{1}{\sqrt{2}} (v_{i} + \eta_{i}^{0} + ia_{i}) \end{pmatrix}; \quad i = 1, 2$$
(3)

The most general potential for 2HDM:

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} + (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{2}^{\dagger} \Phi_{2}) \Phi_{1}^{\dagger} \Phi_{2} + h.c.], \qquad (4)$$

•  $m_{12}^2$  and  $\lambda_5$  could be complex.

•  $\mathbb{Z}_2$ :  $\Phi_i \to (-)^i \Phi_i \Leftrightarrow \lambda_{6,7} = 0$  (No FCNC at the tree-level) <sup>23-26-Sep. 2019, Tangier</sup>

Bouzid Manaut (ERPTM, BM)

Exotic decays of top partner in 2HDM

23-26 September 2019 5 / 19

# Two Higgs Doublets Model (2HDM)

The two complex scalar doublets  $\Phi_{1,2}$  may be rotated into a basis,  $H_{1,2}$ , where only one obtains a Vacuum Expectation Value (VEV) :

$$H_1 = \begin{pmatrix} G^+ \\ \frac{\nu + \phi_1^0 + iG^0}{\sqrt{2}} \end{pmatrix} \quad ; \quad H_2 = \begin{pmatrix} H^+ \\ \frac{\phi_2^0 + iA}{\sqrt{2}} \end{pmatrix} \tag{5}$$

where  $\phi_{1,2}^0$  may be rotated as:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} s_{\beta-\alpha} & c_{\beta-\alpha} \\ c_{\beta-\alpha} & -s_{\beta-\alpha} \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix}$$
(6)

We left with two CP-even (h, H) one CP-odd (A) and a pair of charged Higgs  $(H^{\pm})$ . In addition, we used as input parameter  $\tan \beta$ ,  $\sin(\beta - \alpha)$  and  $m_{12}^2$ .

23-26-Sep. 2019, Tangier

#### Models

|   | Sin | glet        |                                        | Doublet                                | Triplet                                |                                             |                                             |
|---|-----|-------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|
|   | Т   | В           | $\begin{pmatrix} T \\ B \end{pmatrix}$ | $\begin{pmatrix} X \\ T \end{pmatrix}$ | $\begin{pmatrix} B \\ Y \end{pmatrix}$ | $\begin{pmatrix} X \\ T \\ B \end{pmatrix}$ | $\begin{pmatrix} T \\ B \\ Y \end{pmatrix}$ |
| Q | 2/3 | <b>-1/3</b> | 1/6                                    | 7/6                                    | -5/6                                   | 2/3                                         | <b>-1/3</b>                                 |

Francisco del Aguila et al JHEP 0009 (2000)

- They have spin 1/2 and belong into  $SU(3)_c$ ;
- They can mix with 2HDM Higgses;
- They can be isospin singlets, doublets or triplet.
- The electric charges of the new VLQs are  $Q_T=2/3$ ,  $Q_B=-1/3$ ,  $Q_X=5/3$  and  $Q_Y=-4/3$

# Yukawa interactions

#### 2HDM + (T) Singlet :

$$-\mathcal{L}_{Y}^{II} \supset y_{t}\overline{q}_{L}^{0}\widetilde{\Phi}_{1}t_{R}^{0} + y_{t}\cot\beta\overline{q}_{L}^{0}\widetilde{\Phi}_{2}t_{R}^{0} + \xi_{T}\overline{q}_{L}^{0}\widetilde{\Phi}_{1}T_{R}^{0} + y_{T}\overline{q}_{L}^{0}\widetilde{\Phi}_{2}T_{R}^{0} + M\overline{T}_{L}^{0}T_{R}^{0} + h.c(7)$$

These parameters are not physical, we rotate them into physical basis and we get :

$$\tan(2\theta_L) = \frac{\sqrt{2}Mv\xi_T}{M^2 - \frac{y_T^2v^2}{2} - \frac{\xi_T^2v^2}{2}} ; \quad \tan(2\theta_R) = \frac{y_T\xi_Tv^2}{M^2 - \frac{y_T^2v^2}{2} - \frac{\xi_T^2v^2}{2}}$$
(8)  
$$m_T^2 + m_t^2 = M^2 + \frac{y_t^2v^2}{2} + \frac{\xi_T^2v^2}{2} ; \quad \frac{y_t^2v^2M^2}{2} = m_t^2m_T^2$$
(9)  
$$M^2 = m_t^2\sin^2(\theta_L) + m_T\cos^2(\theta_L),$$
(10)  
$$\tan(\theta_L) = \frac{m_t}{m_T}\tan(\theta_R) ; \quad \frac{\xi_t}{y_t} = s_Lc_L\frac{m_T^2 - m_t^2}{m_Tm_t},$$
(11)

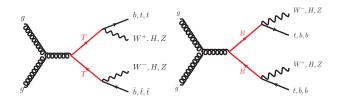



Figure: 1 Pair production of VLQs at LHC at tree-level

• In the SM with additional singlet top :  $T \rightarrow W^+b$ ,  $T \rightarrow tH$ ,  $T \rightarrow tZ$  $BR(T \rightarrow W^+b) + BR(T \rightarrow tH) + BR(T \rightarrow tZ) =: 50\% : 25\% : 25\%$ 

23-26-Sep. 2019, Tangier

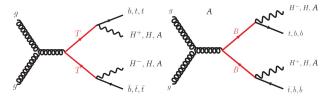



Figure: 2 Pair production of VLQs at LHC at tree-level

• In 2HDM,  $T \rightarrow H^+b$ ,  $T \rightarrow t\phi$ :  $(\phi = H, A)$  $BR(T \rightarrow SM) + BR(T \rightarrow 2HDM) = 100\%$ 

with

 $BR(T \rightarrow 2HDM) = BR(T \rightarrow bH^+) + BR(T \rightarrow tH) + BR(T \rightarrow tA)$ 

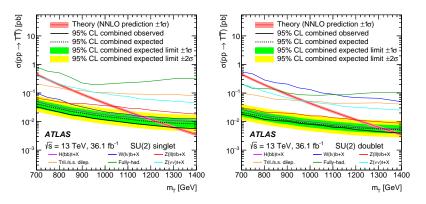



Figure: 3 Limits from ATLAS at run 2 on VLQ mass

In this talk, we will study the phenomenological decay of new top T in the alignement limit  $(\cos(\beta - \alpha)=0)$ 

$$\kappa_{Tt}^{h} = \frac{c_L s_L}{m_T} (m_t P_L + m_T P_R)$$
$$\kappa_{Tt}^{H} = \frac{c_L s_L \cot \beta}{m_T} (m_t P_L + m_T P_R)$$
$$\kappa_{Tt}^{A} = -\frac{c_L s_L \cot \beta}{m_T} (m_t P_L + m_T P_R)$$

It is clear that when  $s_L \rightarrow 0$ , all those couplings vanish and we recover 2HDM framework.

We have used the following public codes which respect most of the theoretical and experiental constraints, that are:

- 2HDMC-1.7.0 (BFB, Unitarity, Vacuum stability)
- HiggsBounds-5 and HiggsSignals-2 (Run 2)
- S, T and U oblique parameters
- $B \rightarrow X_s \gamma$  constraint

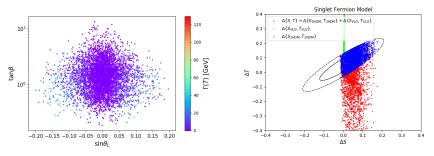



Figure: 4 Results in  $(s_L, \tan \beta)$  plane.

- Right plot: blue points are the allowed region by imposing *S*, *T* parameters.
- Left plot: the surviving points in (s<sub>L</sub>, tan β) plane, mapped with total Γ(T) of the new top.
- It is clear that the points with small  $\Gamma(T)$  are the most dominate.

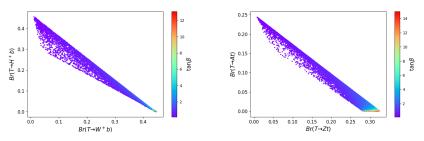



Figure: 5 Correlations between  $W^+b$  and  $H^+b$  in the left and Zt with At in the T-singlet model

• For tan  $\beta \geq 10$ ,  $BR(T \rightarrow W^+b)$  is about 50%

• However, for tan  $\beta < 4$ : when  $BR(T \rightarrow H^+b)$  increases the  $BR(T \rightarrow W^+b)$  decreases.

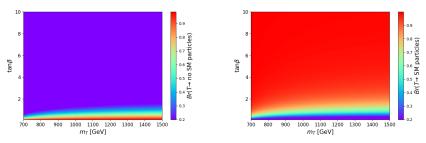



Figure: 6 Complementary regions of  $BR(T \rightarrow SM)$  and  $BR(T \rightarrow 2HDM)$  in the *T*-singlet

For low tan β, the channel in witch new T decays into 2HDM particles is dominate.



Figure: 7 Two benchmark points for looking T decays into SM and 2HDM particles.

|     | m <sub>h</sub> | m <sub>H</sub> | m <sub>A</sub> | $m_{H^{\pm}}$ | m <sub>12</sub> | tan $\beta$ | $sin(\beta - \alpha)$ | УТ    | m <sub>T</sub> | $\sin \theta_L$ |
|-----|----------------|----------------|----------------|---------------|-----------------|-------------|-----------------------|-------|----------------|-----------------|
| BP1 | 125.0          | 588.11         | 548.85         | 603.20        | 376.84          | 0.707       | 0.998                 | 19.81 | 1454.86        | -0.108          |
| BP2 | 125.0          | 637.91         | 634.53         | 635.40        | 234.31          | 0.139       | 1.0                   | 0.233 | 1477.71        | -0.021          |

# Conclusion

.

- In this talk, we have extended the ordinary 2HDM-II by a singlet heavy VLQ
- New vector-like quarks can naturally have masses above the electroweak symmetry breaking scale.
- They are being searched for at the LHC, with lower limits on their masses in the range 1100 1300 *GeV*, at present.
- This work complements the study of heavy top decays in SM.

23-26-Sep. 2019, Tangier

# Thanks for listening