New decay modes of VLQ at the LHC

Rachid BENBRIK
Faculty Polydisciplinaire Safi, Cadi Ayyad University
MSISM Team, Morocco.
1st Mediterranean Conference on Higgs Physics
23-37 September 2019, Tanger
SHIFT collaboration: E. Bergeaas Kuutmann, D.Buarque Franzosi, V. Ellajosyula,R.
Enberg,G. Ferretti,M. Isacson, Y.-B. Liu,T. Mandal,T. Mathisen,S. Moretti,L. Panizzi

September 26, 2019

Table of contents

1. Introduction and motivation
2. Simplified model
3. Analysis
4. Results and Discussions
5. Conclusion

Introduction and Motivation

- Almost $150 \mathrm{fb}^{-1}$ and $180 \mathrm{fb}^{-1}$ of data have collected during Run II.
- No significant deviations from the SM have been recorded.
- Most of common scenarios BSM are restricted.
- Yet, it is important to study the connection beween top and Higgs sector.
- Most of the current data may help to understand the nature of hierarchy problem.

$\mathrm{SM}+\mathrm{VLQ}+$ Scalar

- Gauge eigenstates in the top sector by $\widetilde{t}_{L}, \widetilde{t}_{R}$ and T.
- Mass eigenstates that are to be denoted by t and t^{\prime}.

The Lagrangian for this model before EW symmetry breaking (EWSB) can be written as

$$
\begin{gather*}
\mathcal{L}_{\text {kin }} \supset \bar{T}(i / D-M) T+\frac{1}{2}\left(\partial_{\mu} S\right)\left(\partial^{\mu} S\right)-\frac{1}{2} m_{S}^{2} S^{2}, \\
\mathcal{L}_{\text {int }} \supset-\lambda_{S}^{a} S \bar{T}_{L} T_{R}-\lambda_{S}^{b} S \bar{T}_{L} \tilde{t}_{R}-\widetilde{y}\left(\bar{Q}_{L} \widetilde{H}\right) \tilde{t}_{R}-\lambda_{1}\left(\bar{Q}_{L} \widetilde{H}\right) T_{R}-m_{2} \bar{T}_{L} \widetilde{t}_{R}+\text { h.c. } \tag{2}
\end{gather*}
$$

- where the SM Higgs doublet is denoted by H.
- The SM Yukawa coupling for the top quark is here denoted by \widetilde{y} and Q_{L} is the left-handed quark doublet of the third generation.
- The couplings $\lambda_{S}^{a, b}$ are real if S is a scalar and purely imaginary if S is a pseudoscalar.

$\mathrm{SM}+\mathrm{VLQ}+$ Scalar

After EWSB, we have a mass matrix

$$
\begin{gather*}
\mathcal{L}_{t} \supset\left(\begin{array}{ll}
\overline{\tilde{t}}_{L} & \bar{T}_{L}
\end{array}\right)\left(\begin{array}{cc}
m_{\tilde{t}} & m_{1} \\
m_{2} & M
\end{array}\right)\binom{\widetilde{t}_{R}}{T_{R}}+\text { h.c. } \tag{3}\\
\binom{t_{L, R}}{t_{L, R}^{\prime}}=\left(\begin{array}{cc}
c_{L, R} & -s_{L, R} \\
s_{L, R} & c_{L, R}
\end{array}\right)\binom{\widetilde{t}_{L, R}}{T_{L, R}} \tag{4}
\end{gather*}
$$

where $\left\{t, t^{\prime}\right\}$ are the mass eigenstates and the mixing angles are given by
$\tan \left(2 \theta_{L}\right)=\frac{2\left(m_{\tilde{t}} m_{2}+M m_{1}\right)}{M^{2}-m_{t}^{2}-m_{1}^{2}+m_{2}^{2}}, \quad \tan \left(2 \theta_{R}\right)=\frac{2\left(m_{\tilde{t}} m_{1}+M m_{2}\right)}{M^{2}-m_{\tilde{t}}^{2}+m_{1}^{2}-m_{2}^{2}}$.
The mass eigenvalues m_{t} and $m_{t^{\prime}}$ are found by computing the eigenvalues. Focusing on the mixing terms yields

$$
\begin{equation*}
\kappa_{L}^{S}=\left(\lambda_{S}^{a} s_{L} c_{R}+\lambda_{S}^{b} s_{L} s_{R}\right)^{*}, \quad \kappa_{R}^{S}=\lambda_{S}^{a} c_{L} s_{R}-\lambda_{S}^{b} c_{L} c_{R} \tag{6}
\end{equation*}
$$

while for the coupling to the top we have

$$
\begin{equation*}
\kappa_{t}=\operatorname{Re}\left(-\lambda_{S}^{a} s_{L} s_{R}+\lambda_{S}^{b} s_{L} c_{R}\right), \quad \widetilde{\kappa}_{t}=\operatorname{Im}\left(-\lambda_{S}^{a} s_{L} s_{R}+\lambda_{S}^{b} s_{L} c_{R}\right) \tag{7}
\end{equation*}
$$

SM+VLQ+Scalar

Figure: BRs of t^{\prime} as a function of the mass for a specific parameter point.

- $t^{\prime} \rightarrow S t$ channel has a BR of almost 100%.

2HDM + VLQ. See Bouzid's Talk

Figure: BRs of t^{\prime} as a function of the mass for a specific parameter point.

- $t^{\prime} \rightarrow S t$ channel has a BR of almost 50%.

Composite Higgs Model

The SM Higgs \mathcal{H} field in this model is a bi-doublet of $\mathrm{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$, which together with a singlet S forms the five dimensional anti-symmetric irrep of $\mathrm{Sp}(4)$,

$$
\mathcal{H} \oplus S \equiv\left(\begin{array}{cc}
H^{0 *} & H^{+} \tag{8}\\
-H^{+*} & H^{0}
\end{array}\right) \oplus S \in(\mathbf{2}, \mathbf{2}) \oplus(\mathbf{1}, \mathbf{1})=\mathbf{5} .
$$

The fermionic sector also consists of a bi-doublet and a singlet in the $\mathbf{5}$ of $\mathrm{Sp}(4)$,

$$
\psi \equiv\left(\begin{array}{cc}
T & X \tag{9}\\
B & T^{\prime}
\end{array}\right) \oplus \widetilde{T} \in(\mathbf{2}, \mathbf{2}) \oplus(\mathbf{1}, \mathbf{1})=\mathbf{5} .
$$

The new fermions mix with the third family quarks of the SM. the Lagrangian becomes

$$
\begin{equation*}
\mathcal{L}=y_{L} f \operatorname{tr}\left(\bar{Q}_{L} \Sigma \Psi_{R} \Sigma^{T}\right)+y_{R} f \operatorname{tr}\left(\Sigma^{*} \bar{\Psi}_{L} \Sigma^{\dagger} \tilde{t}_{R}\right)-M \operatorname{tr}\left(\bar{\Psi}_{L} \Psi_{R}\right)+\text { h.c. } \tag{10}
\end{equation*}
$$

Composite Higgs Model

we can write the part of eq. (10) concerning top partners as

$$
\mathcal{L}_{\mathrm{tops}}=-\left(\begin{array}{cccc}
\overline{\tilde{t}}_{L} & \bar{T}_{L} & \bar{T}_{L}^{\prime} & \overline{\tilde{T}}_{L}
\end{array}\right)\left(\mathcal{M}+h \mathcal{I}_{h}+S \mathcal{I}_{S}\right)\left(\begin{array}{c}
\widetilde{t}_{R} \tag{11}\\
T_{R} \\
T_{R}^{\prime} \\
\widetilde{T}_{R}
\end{array}\right)+\text { h.c. }
$$

where the mass and Yukawa matrices are given by

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{cccc}
0 & y_{L} f \cos ^{2}\left(\frac{\theta}{2}\right) & -y_{L} f \sin ^{2}\left(\frac{\theta}{2}\right) & 0 \\
\frac{y_{R} f}{\sqrt{2}} \sin \theta & M & 0 & 0 \\
\frac{y_{R} f}{\sqrt{2}} \sin \theta & 0 & M & 0 \\
0 & 0 & 0 & M
\end{array}\right) \\
& \mathcal{I}_{h}=\left(\begin{array}{cccc}
0 & -\frac{1}{2} y_{L} \sin \theta & -\frac{1}{2} y_{L} \sin \theta & 0 \\
\frac{y_{R}}{\sqrt{2}} \cos \theta & 0 & 0 & 0 \\
\frac{k}{\sqrt{2}} \cos \theta & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Constraints from $\gamma \gamma$ and γZ

We assume t^{\prime} decays at 100% rate as $t^{\prime} \rightarrow S t$. For S, we consider all the possible bosonic decay channels necessary to ensure gauge invariance in the CHM^{1},

$$
\begin{equation*}
S \rightarrow\{\gamma \gamma, Z \gamma, W W, Z Z\} \tag{12}
\end{equation*}
$$

Figure : Pair production of t^{\prime} with the decay of one branch into $t(S \rightarrow \gamma \gamma)$ and inclusive decay for the other.

[^0]
Constraints from $\gamma \gamma$ and γZ

Figure: Upper limits on the cross section in the $m_{t^{\prime}}$ vs m_{S} plane for the $\gamma \gamma$ (left panel) and $Z \gamma$ channels (right panel) from the recast of the ATLAS and CMS search, respectively. The solid black lines represents the bounds on the two masses obtained by comparing the upper limits with the pair production cross section of t^{\prime} at NLO+NNLL computed through HATHOR under the assumption of 100% BRs for both t^{\prime} and S in the respective channels and in the narrow width approximation (NWA).

Constraints from $\gamma \gamma$ and γZ

Figure: Left: Efficiencies for the $\gamma \gamma \mathrm{SR}$ for the signal decay channel $S(\rightarrow \gamma \gamma) S(\rightarrow \gamma \gamma)$. Right: Efficiencies for the $Z \gamma$ SR for the signal decay channel $S(\rightarrow Z \gamma) S(\rightarrow Z \gamma)$.

Interpretation

The expected number of background events in one of the signal regions $\mathrm{SR} \in\{\gamma \gamma, Z \gamma\}, B_{\mathrm{SR}}$, is given by

$$
\begin{equation*}
B_{\mathrm{SR}}\left(m_{S}, m_{t^{\prime}}\right)=L \sigma_{B_{\mathrm{SR}}} \epsilon_{B_{\mathrm{SR}}}\left(m_{S}, m_{t^{\prime}}\right) \tag{13}
\end{equation*}
$$

with L the integrated luminosity, and $\sigma_{B_{\gamma \gamma}}=74.0 \mathrm{pb}$ and $\sigma_{B_{z \gamma}}=4.58 \mathrm{pb}$ our best estimate of the total background cross section for the $\gamma \gamma$ and $Z \gamma$ signal regions, respectively, and $\epsilon_{B_{\mathrm{SR}}}$ the efficiency after all cuts in the corresponding SR.
The number of background events can be extracted for arbitrary values of m_{S} and $m_{t^{\prime}}$ by interpolating the data.

$m_{S}[\mathrm{GeV}]$	$\sigma_{B_{\gamma \gamma}} \epsilon_{B_{\text {SR }}}\left(m_{S}\right)[\mathrm{pb}]$
100	0.0146
200	0.00144
400	8.41×10^{-4}
600	1.82×10^{-4}
800	5.23×10^{-5}
1000	2.14×10^{-5}
1200	7.64×10^{-6}
1400	3.10×10^{-6}

Table: The background cross section times efficiency $\sigma_{B_{\gamma}, \epsilon_{B_{2}^{\prime}}\left(\bar{m}_{S}\right)(\mathrm{in} \mathrm{pb}) \equiv}^{\equiv}$

Interpretation

The number of expected signal events for each $S R$ is given by

$$
\begin{equation*}
S_{\mathrm{SR}}=L \sigma\left(m_{t^{\prime}}\right)\left(\sum_{x, Y} \epsilon_{\mathrm{SR}}^{Y, X} \mathrm{BR}_{S \rightarrow X} \mathrm{BR}_{S \rightarrow Y}\right) \tag{14}
\end{equation*}
$$

where $\epsilon_{\mathrm{SR}}^{Y, X}$ is the final efficiency in appropriate signal region SR for the signal sample with decay $(S \rightarrow X)(S \rightarrow Y)$ with $X, Y \in\{\gamma \gamma, Z \gamma, W W, Z Z\}$. (In these expressions we assume the validity of the NWA and assume $100 \% \mathrm{BR} t^{\prime} \rightarrow S t$ and $\bar{t}^{\prime} \rightarrow S \bar{t}$.) we estimate the significance by employing the formula:
$z=\sqrt{2}\left\{(S+B) \ln \left[\frac{(S+B)\left(B+\sigma_{b}^{2}\right)}{B^{2}+(S+B) \sigma_{b}^{2}}\right]-\frac{B^{2}}{\sigma_{b}^{2}} \ln \left[1+\frac{\sigma_{b}^{2} S}{B\left(B+\sigma_{b}^{2}\right)}\right]\right\}^{1 / 2}$,
that is obtained by using the "Asimov" data-set into the profile likelihood ratio.

Interpretation: $\mathrm{SM}+\mathrm{VLQ}+\mathrm{S}$

Figure: LHC optimal reach for different LHC luminosities for the $\gamma \gamma$ SR (left) and $Z \gamma$ SR (right). The solid lines correspond to the 5σ discovery reach, while the dashed lines correspond to the 2σ exclusion reach. The dotted lines identify the region with 1 irreducible background event, where the contribution of fake rates can become relevant.

Interpretation: $\mathrm{SM}+\mathrm{VLQ}+\mathrm{S}$

Figure: Left panel: BRs of S resonance into EW bosons for the pseudoscalar case ($\kappa_{B}=\kappa_{W}=0$) in the photophobic S case $\left(\tilde{\kappa}_{B}=-\tilde{\kappa}_{W}\right)$. Right panel: LHC reach for different LHC luminosities; the meaning of contours is the same as in last slide.

Interpretation: $\mathrm{SM}+\mathrm{VLQ}+\mathrm{S}$

Figure : Left panel: BRs of S resonance into EW bosons for the pseudoscalar case $\left(\kappa_{B}=\kappa_{W}=0\right)$ in the W-phobic case ($\tilde{\kappa}_{W}=0$). Right panel: LHC reach for different LHC luminosities; the meaning of contours is the same as before.

Interpretation: $2 \mathrm{HDM}+\mathrm{VLQ}$

Figure: Left: $2 \sigma \times \mathrm{BR}\left(t^{\prime} \rightarrow t A / H\right) \times \mathrm{BR}(A / H \rightarrow \gamma \gamma)$ in the $2 \mathrm{HDM}+\mathrm{VLQ}$ over the plane $\left(m_{t}^{\prime}, m_{S}\right)$, where $m_{S}=m_{H}=m_{A}$, for the following inputs parameters: $\sin (\beta-\alpha)=1, m_{h}=125.09 \mathrm{GeV}, m_{H^{ \pm}}=600 \mathrm{GeV}, \tan \beta=7$, $m_{12}^{2}=m_{S}^{2} /(\cos \beta \sin \beta), y_{T}=10$ and $0.05 \leq s_{L} \leq 0.1$. Right: BRs of the H, A states in the $2 \mathrm{HDM}+\mathrm{VLQ}$ as a function of s_{L} for the following inputs parameters: $m_{t^{\prime}}=1 \mathrm{TeV}, \sin (\beta-\alpha)=1, m_{h}=125.09 \mathrm{GeV}, \tan \beta=7$,
$m_{12}^{2}=m_{S}^{2} /(\cos \beta \sin \beta)$ and $y_{T}=10$.

Interpretation: $2 \mathrm{HDM}+\mathrm{VLQ}$

Figure: Significances in the $2 \mathrm{HDM}+\mathrm{VLQ}$ with for the inputs parameters of figure 9 with the exception of and $s_{L}=0.05$ (left) and $s_{L}=0.09$ (right). The coding colour is the same as before.

Conclusion

- ATLAS and CMS analyses have primarily been carried out the signatures of VLQs under the assumption that these VLQ decay into SM particles only.
- It may be very useful to for $t^{\prime} \rightarrow t+$ object, where this object could be either fundamental or composite.
- We have assumed in this talk an exemple of spin-0 fundamental states.
- Discovery reach and exlusion regions are presented in two-models by assuming spin-0 state decaying into $\gamma \gamma$ and γZ.
- Results are presented for Run II and Run III
- Limits on t^{\prime} mass are extracted in the simplied models.

Thank you

[^0]: ${ }^{1}$ Note that additional decays are present for the $2 \mathrm{HDM}+\mathrm{VLQ}$ case, specifically, $b \bar{b}$ and $t \bar{t}$, which are then simulated for the corresponding signal.

