1st Medíterranean Conference on Híggs Physics (MCHP)

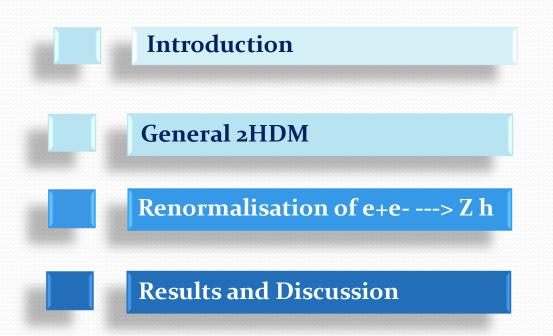
> 23-26 September, 2019 Tangíer, Morocco

High precision of $h \rightarrow b b^{-}$ and $h \rightarrow \tau + \tau - in e + e - machine$

Abdeljalil Habjia^{1*}, Souad Taj¹, Rachid Benbrik²

1Lab LISRT, FP Beni Mellal, USMS,Morocco ²Laboratory LTI, Dept.Physics, FP Safi, UCA, Morocco

Outlines



Presentation

• We also examine $h^{\circ}, H^{\circ} \rightarrow bb^{-}$ and $h^{\circ}, H^{\circ} \rightarrow \tau^{+}\tau^{-}$ which may receive large EW contribution from triple Higgs coupling which are absent in the SM.

• we propose 4 interesting benchmark scenarios of 2HDM for future colliders.

• It is found that for these benchmark scenarios, both EW and real emission corrections are sizable and could be measured at a future e⁺e⁻ collider.

Introduction

LHC hase also mesured Higgs coupling $h \rightarrow bb^-$ and $h \rightarrow \tau + \tau - via$ the process pp \rightarrow htt

The SM works well in the current Higgs data

<u>@HL-LHC</u>: (LHC + High Luminosity) in the Run-2 (13 – 14 Tev)

Would be to improve all the measurements and to perform new ones $h \rightarrow \gamma Z$ as welle as the triple self-coupling of Higgs boson.

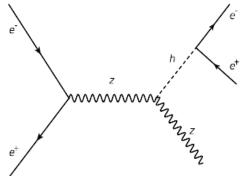
Uncertainty amelioreted:

	h→bb⁻	$h { ightarrow} au { m +} au { m -}$		
LHC	10% 13%	6% 8%		
HL-LHC	4%7%	2% 5%		
LC (e+e-)	0,6%	1,3%		
	would be much smaller			

- □ In the SM : EW-corrections decay { $h \rightarrow bb^-$, $h \rightarrow \tau + \tau -$ } are also established
 - The correction effects to distinguish between the Standard Model (SM) and various beyond-standard models (BSM)
- □ In the 2HDM : several studies have been carried to evaluate the EWcorrections to fermionics Higgs decay
 - □ <u>**@LHC**</u>: The precision measurements of Higgs boson are arather challenging

(due the large theoritical uncertainties)

- □ <u>@LC (e+e−)</u>: can offer us precision measurements on the production and decay properties of Higgs boson.
- □ **For exemple :** Higgs-strahlung (process : $e+e- \rightarrow Zh$)
 - The dominant production channel for the Higgs boson at e+ecollider
 - with 240 ---- 250 Gev + Lumi (250 fb⁻¹)
 - Higgs boson per year will be produced
 - Measurement of the Higgs coupling at % lev
 - @ILC experiment : Luminosity is expected tc



The General 2HDM

 \Box Let us introduce two Higgs with opposite Hypercharge: ϕ_1 and ϕ_2

- After electroweak symmetry breaking 3 of their 8 degrees of freedom will be eaten by the W and Z, the other 5 remain physical.
- The Higgs spectrum contains now a charged Higgs (H[±]), a pseudoscalar Higgs (A), and two scalar Higgses (h, H)
- The neutral components of both Higgs doublets acquire a vacuum expectation value:

$$|\langle \phi_1 \rangle| = \begin{pmatrix} 0\\ v_1/\sqrt{2} \end{pmatrix}$$

$$\langle \phi_2 \rangle | = \begin{pmatrix} v_2/\sqrt{2} \\ 0 \end{pmatrix}$$

Additional parameters up to now:

- m_{H[±]}, m_A, m_H
- $\tan\beta$ $\tan\beta = \frac{v_2}{v_1}$
- α (mixing angle between H and h)

Scalar Sector

two complex SU(2)L Higgs doublets

$$\Phi_1 = \begin{pmatrix} \omega_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} , \qquad \Phi_2 = \begin{pmatrix} \omega_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$$

• non-vanishing vacuum expectation values (VEVs) v_1, v_2 with

$$v^2 := v_1^2 + v_2^2 \approx (246 \text{ GeV})^2$$

• The most general 2HDM scalar potential which is invariant under SU(2)_L \otimes U(1)_Y and possesses a soft Z₂ breaking term (m_{12}^2)

$$\begin{split} V_{2\text{HDM}}\left(\Phi_{1},\Phi_{2}\right) &= m_{11}^{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right) + m_{22}^{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right) - m_{12}^{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right) + \left(\Phi_{2}^{\dagger}\Phi_{1}\right)\right] \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) \\ &+ \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \left(\Phi_{2}^{\dagger}\Phi_{1}\right)^{2}\right] \end{split}$$

• Z₂ symmetry that forbids FCNC couplings at the tree level

Parameters

8 real-valued potential parameters:

dimensionless $\lambda_i \ (i = 1, ..., 5)$

mass-squared parameters $m_{11}^2, m_{22}^2 \text{ and } m_{12}^2$ transformation to the Higgs mass basis via scalar mixing angles α for the CP-even sector β for the CP-odd and charged sectors $\tan \beta = \frac{v_2}{v_1}$

set of free parameters of the 2HDM

 $\left\{ m_{h^0}, m_{H^0}, m_{A^0}, m_{H^{\pm}}, \alpha, \beta, m_{12}^2, T_{h^0}, T_{H^0}, e, m_W, m_Z, m_{\Psi} \right\}$

Yukawa Interaction for the 2HDM

The most general Yukawa interactions can be written as follows:

$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = \overline{Q}_L Y_u \widetilde{\Phi}_2 u_R + \overline{Q}_L Y_d \Phi_d d_R + \overline{L}_L Y_\ell \Phi_\ell \ell_R + \text{h.c.}$$

• the Yukawa interactions in terms of mass eigenstates of the neutral and charged Higgs bosons fields :

$$-\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = \sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_f^{h^0} \overline{f} f h^0 + \xi_f^{H^0} \overline{f} f H^0 - i \xi_f^{A^0} \overline{f} \gamma_5 f A^0 \right) \\ + \left\{ \frac{\sqrt{2} V_{ud}}{v} \overline{u} \left(m_u \xi_u^{A^0} \mathbf{P}_L + m_d \xi_d^{A^0} \mathbf{P}_R \right) dH^+ + \frac{\sqrt{2} m_\ell \xi_\ell^{A^0}}{v} \overline{\nu_L} \ell_R H^+ + \text{h.c} \right\}$$

• Depending on the Z₂ assignment, we have four type of models

type	$\xi_u^{h^0}$	$\xi_d^{h^0}$	$\xi_l^{h^0}$	$\xi_u^{H^0}$	$\xi_d^{H^0}$	$\xi_l^{H^0}$	$\xi_u^{A^0}$	$\xi_d^{A^0}$	$\xi_l^{A^0}$
Ι	c_{α}/s_{β}	c_{α}/s_{β}	c_{α}/s_{β}	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	$\cot\beta$	$-\cot\beta$	$-\cot\beta$
II	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	$-s_{\alpha}/c_{\beta}$	s_{lpha}/s_{eta}	c_{α}/c_{β}	c_{α}/c_{β}	$\cot\beta$	aneta	$\tan\beta$
III	c_{α}/s_{β}	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	c_{α}/c_{β}	$\cot\beta$	$-\cot\beta$	$\tan\beta$
IV	c_{lpha}/s_{eta}	$-s_{\alpha}/c_{\beta}$	c_{α}/s_{β}	s_{lpha}/s_{eta}	c_{α}/c_{β}	s_{lpha}/s_{eta}	$\cot\beta$	$\tan\beta$	$-\cot\beta$

Table 1: Yukawa coupling coefficients of the neutral Higgs bosons h^0 , H^0 , A^0 to the up-quarks, down-quarks and the charged leptons (u, d, ℓ) in the four 2HDM types.

These couplings follow from the scalar potential and are thus independent of the Yukawa types used; they are given by:

$$\begin{split} \lambda_{h^0h^0h^0}^{2HDM} &= \frac{-3g}{2m_W s_{2\beta}^2} \bigg[(2c_{\alpha+\beta} + s_{2\alpha}s_{\beta-\alpha})s_{2\beta}m_{h^0}^2 - 4c_{\beta-\alpha}^2c_{\beta+\alpha}m_{12}^2 \bigg] \\ \lambda_{H^0h^0h^0}^{2HDM} &= -\frac{1}{2}\frac{gc_{\beta-\alpha}}{m_W s_{2\beta}^2} \bigg[(2m_h^2 + m_{H^0}^2)s_{2\alpha}s_{2\beta} - 2(3s_{2\alpha} - s_{2\beta})m_{12}^2 \bigg] \\ \lambda_{h^0H^0H^0}^{2HDM} &= \frac{1}{2}\frac{gs_{\beta-\alpha}}{m_W s_{2\beta}^2} \bigg[(m_{h^0}^2 + 2m_{H^0}^2)s_{2\alpha}s_{2\beta} - 2(3s_{2\alpha} + s_{2\beta})m_{12}^2 \bigg] \\ \lambda_{h^0H^\pm H^\mp}^{2HDM} &= \frac{1}{2}\frac{g}{m_W} \bigg[(m_{h^0}^2 - 2m_{H^\pm}^2)s_{\beta-\alpha} - \frac{2c_{\beta+\alpha}}{s_{2\beta}^2} (m_h^2s_{2\beta} - 2m_{12}^2) \bigg] \\ \lambda_{h^0A^0A^0}^{2HDM} &= \frac{1}{2}\frac{g}{m_W} \bigg[(m_h^2 - 2m_{H^\pm}^2)s_{\beta-\alpha} - \frac{2c_{\beta+\alpha}}{s_{2\beta}^2} (m_h^2s_{2\beta} - 2m_{12}^2) \bigg] , \end{split}$$

Theoretical Constraints

- The 2HDM has several theoretical constraints which we briefly address here.
- The scalar potential must satisfy conditions that guarantee that its bounded from below,

V₂HDM \geq 0 is satisfied for all directions of ϕ_1 and ϕ_2 components.

• This requirement imposes the following conditions on the coefficients λi

$$\lambda_1 > 0$$
 , $\lambda_2 > 0$, $\lambda_3 + 2\sqrt{\lambda_1\lambda_2} > 0$, $\lambda_3 + \lambda_4 - |\lambda_5| > 2\sqrt{\lambda_1\lambda_2}$.

• we have indirect experimental constraints from B physics observables on $_2$ HDM parameters such as tan β and the charged Higgs boson mass.

Benchmark points

BP's	α	aneta	$m_h(GeV)$	$m_H(GeV)$	$m_A(GeV)$	$m_{H^{\pm}}~({ m GeV})$
BP1-h	-0.30	2.50	125	212	97.7	178
BP2-h	-0.77	1.00	125	694	512	592
BP1-H	1.46	4.45	95	125	170	135.5
BP2-H	1.24	2.50	95	125	616	611

BP's	$\lambda_{h^0h^0h^0}$	$\lambda_{H^0h^0h^0}$	$\lambda_{h^0H^0H^0}$	$\lambda_{h^0H^\pm H^\mp}$	$\lambda_{h^0A^0A^0}$
BP1-h	0.726	2.74	-257.48	-193.27	14.03
BP2-h	-0.79	-23.48	-184.6	-781.02	-63.67
BP1-H	-499.4	50.8	0.78	11.23	19.77
BP2-H	-238.2	-60.44	-0.55	150	152.2

 Calculations of higher order corrections in perturbation theory in general lead to ultra-violet (UV) divergences

□ To eliminate these UV divergences consists in renormalization of the bare Lagrangian by redefinition of couplings and fields.

□ For renormalization of the Higgs sector we take over the approach used in [20]*, which means on-shell renormalization. (* [20] A. Arhrib, M. Capdequi Peyranere, W. Hollik and S. Penaranda, Phys. Lett. B 579 (2004) 361 doi:10.1016/j.physletb.2003.10.006 [hep-ph/0307391].)

□ For the ho, Ho tadpoles, yielding zero for the renormalized tadpoles and thus v1,2 at the minimum of the potential also at one-loop order,

□ The one-loop Feynman diagrams in 2HDM for simplicity, we draw ho → bb and ho → $\tau_{\pm}\tau_{-}$, where S stands for (H±, Ao, Ho, G±) for both decays while F represents (b,t) for ho → bb and (τ , $\nu\tau$) for ho → $\tau_{+}\tau_{-}$ (see .Fig. (1))

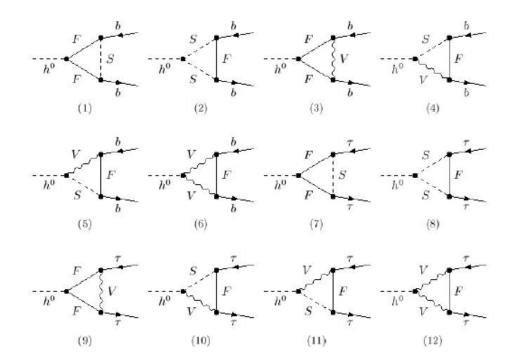


Figure 1: Generic one-loop 2HDM Feynman diagrams contributing to $\Gamma_1(h^0 \to b\overline{b})$ and $\Gamma_1(h^0 \to \tau^+ \tau^-)$.

- To examine the deviation caused by the new physics, we will also evaluate the ratio of branching fractions of Higgs decays in the 2HDM
- To parameterize the quantum corrections, we define the following one-loop ratios:

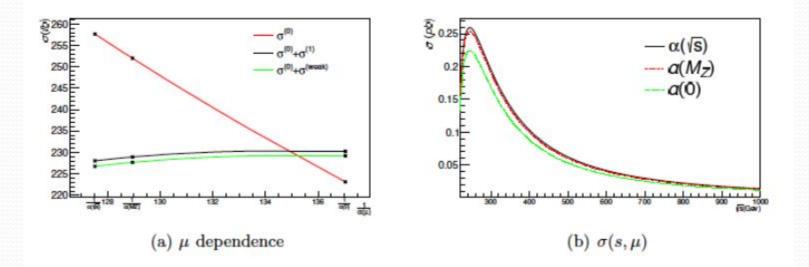
$$\Delta_{ff}(\phi) = \frac{\Gamma_1^{2HDM}(\phi \to f\overline{f})}{\Gamma_1^{SM}(h \to f\overline{f})} - 1,$$

- We have used an on-shell renormalization scheme for all parameters except for wave function renormalization of the Higgs doublet which has been done in the MS scheme.
- Using it (MS scheme), we also compute the decays $h \rightarrow b^-b$ and $h \rightarrow \tau + \tau -$ in the four types of 2HDM by including the EW corrections.

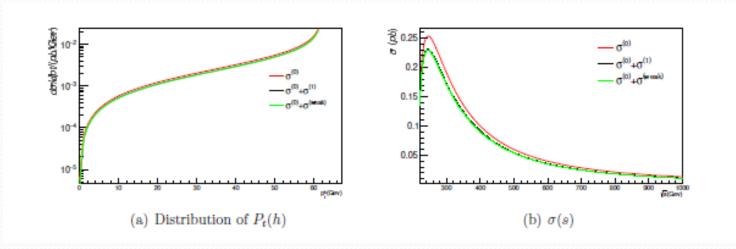
Discussions and conclusion

scheme	$1/lpha(\mu)$	$\sigma^{(0)}$	σ^{weak}	$\sigma^{(1)}$	$\sigma^{(0)} + \sigma^{(1)}$
$\alpha(0)$	137.036	223.12(0)	6.09(0)	7.13(2)	230.25(2)
$\alpha(M_Z)$	128.943	252.00(0)	-24.33(0)	-23.07(2)	228.93(2)
$\alpha(\sqrt{s})$	127.515	257.68(0)	-30.92(0)	-29.63(2)	228.05(2)

Table 3. NLO SM results under different schemes at $\sqrt{s} = 250 \text{ GeV}$ (in unit of fb)



- We proposed 4 benchmark scenarios of the 2HDM after taking into account the current Higgs data from the LHC.
- we have evaluated the radiative corrections to the process e+e− → Zh in the SM and in these 4 benchmark scenarios up to one-loop level.
- here we noticed that the real emission from the initial state can increase the cross section by a factor +0.5%.



□ In this Figure, it is clear that by using precision measurements of the Higgs boson coupling, we can distinguish H-SM-like from h-SM-like in all types of 2HDM.

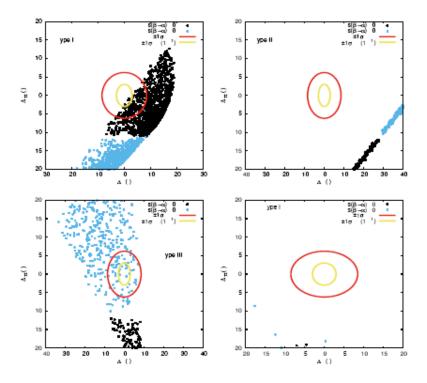


Figure 12: Correlation between relative precisions $\Delta_{\tau\tau}(h^0)$ and $\Delta_{bb}(h^0)$ in 2HDM. The ellipse show the 68% confidence regions for these couplings expected from the HL-LHC and CEPC [12].

 \Box We note that the fiducial points in all types have a large radiative corrections which may be excluded by the sensitivity for Hb⁻b and H τ τ because the ratios of decay rate for the fermion are differents.

Thanks for your attention!

.......