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Abstract

In this work, we present a study of Compton scattering of polarized electrons using the helic-
ity formalism. First, we begin with unpolarized Compton scattering analyzed in the Laboratory
frame, to show the known Klein-Nishina formula and its classical version called the Thomson
formula. Then, we treat the Compton scattering by polarizing the electrons in the Center-
of-Mass frame. A well-known concept of spin-flip differential cross section (DCS) as well as
spin-non flip DCS is introduced. An important consistency check that has been carried out
successfully is that the sum of the two spin-flip and spin-non flip DCSs always gives the un-
polarized DCS. It should be noted that we used the REDUCE [1] software to compute the
complicated traces and MATHEMATICA to obtain the graphs of the DCSs .

1. Introduction

THE THEORETICAL study of scattering processes, based on the mathematical formalism of
QED, can be considered as an useful way to test the validity of this theory, and to ensure

the compatibility between its predictions and the experimental results. Generally, the study
of collisions is very important in particle physics, because first of all, historically, the discov-
ery of the quantum world and the knowledge of the fundamental properties of particles were
made by studying scattering processes. The Compton scattering, which is the subject of this
work, is one of the basic processes in QED. It is the inelastic scattering of a photon with an
electrically charged particle, first discovered in 1923 by Arthur Compton. Furthermore, the
Compton scattering is a process that can be described with a high level of precision by the
theory of QED. The main objective of this work is to treat the Compton scattering of polar-
ized electrons, i.e. to treat the process taking into account that only the electrons are in well
defined states of polarization.

2. Unpolarized Compton scattering in the Laboratory frame

Figure 1: Feynman diagrams for Compton scattering: e− + γ −→ e− + γ.

As usual, the Feynman rules allow us to write the unpolarized squared matrix element as
follows:
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Figure 2: Compton scattering in the laboratory frame [2].

The general expression of the cross section for unpolarized scattering involving two initial
particles and n− 2 final particles is given by:
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2
2 is the flux of the incident particles.

For our process, φ is written in the Lab frame as follows:

φ = 4
√

(k.p)2,

= 4mw.
(4)

The Klein-Nishina formula which is first derived in 1929:(
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The Thomson formula: In the limit of low photon energies (w −→ 0), then w′
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Figure 3: Unpolarized DCS as a function of the angle θL in the Lab frame, drawn for different
values of energy s.

3. Compton scattering of polarized electrons in the Center-of-Mass frame

An ensemble of electrons is said to be polarized if the electron spins have a preferential ori-
entation so that there exists a direction for which the two possible spin states are not equally
populated [3].
Let us apply the polarization of electrons on one of the most important processes of QED
namely the Compton scattering.
Using the Feynman rules, we can get the evaluation of the polarized squared matrix element
as follows:
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In Compton scattering in the center-of-mass frame, we have:

p = (E,−k) , k = (w,k)

p′ = (E′,−k′) , k′ = (w′,k′)
(8)

where w = |k| and w′ = |k′|. The energy conservation E +w = E′+w′ allows us to conclude
that w′ = w and then E′ = E, which means that the collision is elastic in this frame.
In this case, the four-vectors spin s and s′ are expressed by [4]:
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Generally, the polarized DCS for Compton scattering in the center-of-mass frame is ex-
pressed by:
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Where
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And
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Of course, the sum of the spin flip DCS and the spin non flip DCS must give the unpolarized
DCS. (
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Degree of Polarization:
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For our process, this degree of polarization can be written as
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In the low-energy scattering s ≈ m2 (exactly s = 1.001m2), the degree of polarization reduces
to

PCM ' cos(θ). (27)

4. Results and discussions

Before presenting the results and their physical interpretation, we would like to note that the
all graphs of DCSs are plotted in units of r2

0 = α2/m2 where r0 ' 2.8×10−13cm is the classical
radius of the electron.

Figure 4: Unpolarized DCS as function of the angle θCM in the CM frame, drawn for
different values of energy s.

Figure 5: The various DCSs as a function of the angle θCM in the CM frame for s = 1.001m2.

Figure 6: The various DCSs as a function of the angle θCM in the CM frame for s = 2m2.

Figure 7: The various DCSs as a function of the angle θCM in the CM frame for s = 10m2.

Figure 8: Degree of polarization P as a function of the angle θCM in the CM frame, plotted
for different values of energy s.

5. Conclusion

In this work, we have studied the Compton scattering of polarized electrons. We started with
checking the results already known for unpolarized electrons. Then we turn to the case in
which we applied the concept of polarized electrons in the CM frame. The expressions of
the three DCSs (unpolarized DCS, spin flip DCS and spin non flip DCS) and the degree of
polarization were derived. We have studied their behavior in both low and high energies. It is
concluded that in Compton scattering at high energy, the electron’s probability for changing
its spin is zero. A consistency check that is successfully achieved is that the sum of the two
spin-flip and spin-non flip DCSs always gives the unpolarized DCS.
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