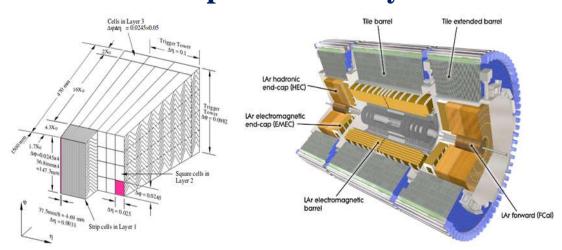
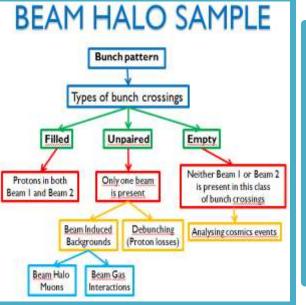


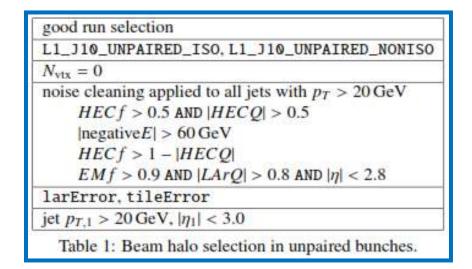
Efficiency and Mis-Id Probability studies to identify non-colliding beam background
Author Name: Zakaria CHADI

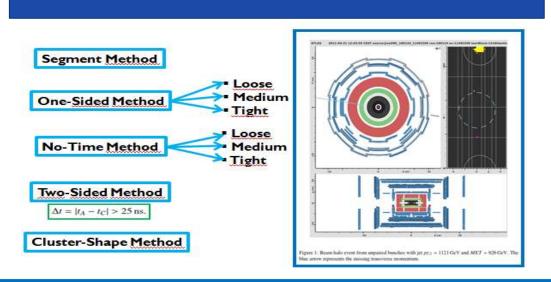
Supervisors Names: Pr. Driss BENCHEKROUN & Mr. Albert OLARIU
Affiliated Institutions: Faculty of Sciences – Hassan II University of Casablanca


1st Mediterranean Conference On Higgs Physics (MCHP) 23th – 26th September 2019 – Tangier, Morocco



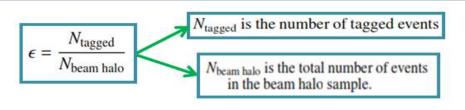
Introduction


Concept of the analysis

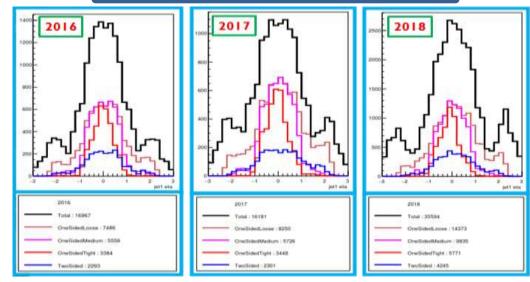


The goal of this analysis is to evaluate the performance of the beam halo tagging methods developed during Run-1 with Run-2 data. Beam halo can have similar detector signatures as some new-physics signals. Therefore, it can be a nonnegligible background for some physics analysis.

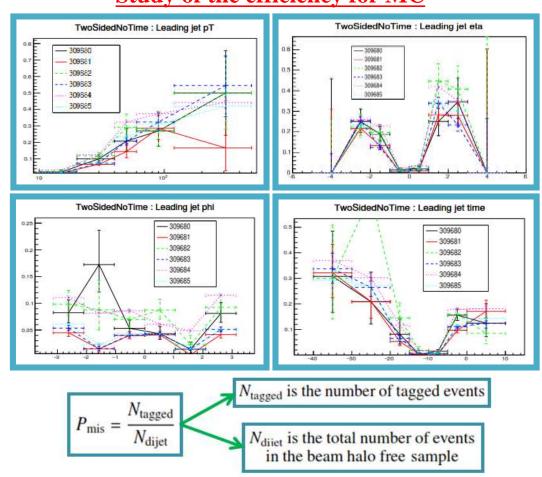
Criterias Of Event Selection



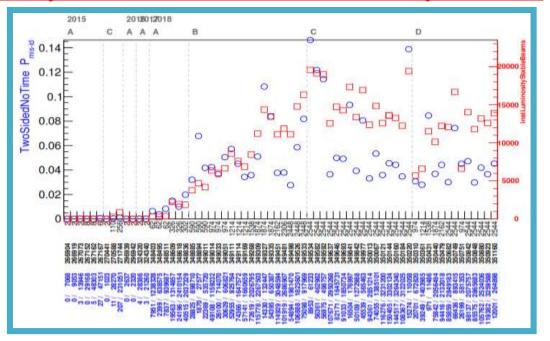
Methods

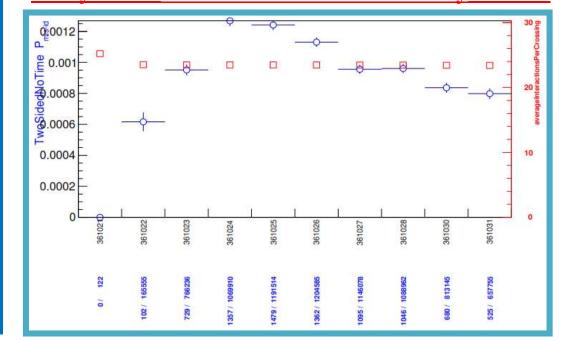

beam halo segment ($\Delta\theta$ cut) beam halo segment early segment beam halo segment on both sides segments matched in ϕ one early segment early, one in-time segment time difference of the segments
early segment beam halo segment on both sides segments matched in ϕ one early segment early, one in-time segment
segments matched in ϕ one early segment early, one in-time segment
beam halo segment calorimeter cluster matched to the segment in ϕ and r cluster time compared to the expected time for A \rightarrow C and C \rightarrow A directions
beam halo segment calorimeter cluster matched to the segment in ϕ and r early or in-time segment (allows to reconstruct the beam halo direction) cluster time compared to the expected time for the reconstructed direction
beam halo segment on both sides calorimeter cluster matched to both segments in ϕ and r one early segment early, one in-time segment time difference of the segments
beam halo segment calorimeter cluster matched to the segment in ϕ and r cut on σ_r/σ_r of the cluster

Results



Study of the efficiency for DATA


Efficiency vs. Leading jet eta


Study of the efficiency for MC

Study of the Mis-Identification Probability for DATA

Study of the Mis-Identification Probability for MC

Conclusion

The Systematic Errors For Efficiency in DATA

	Tagged	Efficiency	Stat.				Systema	tic error
	events	[%]	error [%]	Total [%]	Comp. 1	Comp. 2	Comp. 3	Comp. 4
Segment	42879	88.2	0.15	5.9	-3.1	1.3	0.4	-4.9
SegmentEarly	15213	31.3	0.21	7.7	-5.3	2.1	-0.1	-5.3
SegmentACNoTime	35010	72.0	0.20	6.1	-3.8	1.0	0.6	-4.6
SegmentAC	13724	28.2	0.21	6.2	-4.5	0.9	0.4	-4.2
NoTimeLoose	27221	56.0	0.23	17.0	-13.5	7.0	-1.6	-7.6
NoTimeMedium	19650	40.4	0.22	16.2	-14.1	3.7	-1.5	-7.6
NoTimeTight	11649	24.0	0.19	11.1	-9.8	3.3	-0.9	-4.6
OneSidedLoose	24522	50.4	0.23	15.3	-12.2	6.2	-2.1	-6.6
OneSidedMedium	18121	37.3	0.22	15.7	-13.5	4.3	-1.8	-6.6
OneSidedTight	10658	21.9	0.19	10.6	-9.2	3.7	-1.1	-3.6
TwoSidedNoTime	11077	22.8	0.19	6.9	-5.3	3.5	-0.7	-2.4
TwoSided	7685	15.8	0.17	6.6	-5.3	2.6	-0.5	-3.6

The Events in the AODs For The Mid Prob in DATA

total events in the AODs	: 1459056603		
Segment	81102295	80632072	9.9e-01
SegmentEarly	81102295	40465432	5.0e-01
SegmentACNoTime	81102295	37514996	4.6e-01
SegmentAC	81102295	8413429	1.0e-01
NoTimeLoose	81102295	27200296	3.4e-01
NoTimeMedium	81102295	1820420	2.2e-02
NoTimeTight	81102295	285276	3.5e-03
OneSidedLoose	81102295	12395976	1.5e-01
OneSidedMedium	81102295	729308	9.0e-03
OneSidedTight	81102295	100117	1.2e-03
TwoSidedNoTime	81102295	3206035	4.0e-02
TwoSided	81102295	450067	5.5e-03
NoTimeTight&&TwoSided	81102295	1460	1.8e-05

The Events in the AODs For The Mid Prob in MC

total events in the AODs	: 20000000		
Segment	8103862	6580377	8.1e-01
SegmentEarly	8103862	1066360	1.3e-01
SegmentACNoTime	8103862	198362	2.4e-02
SegmentAC	8103862	33033	4.1e-03
NoTimeLoose	8103862	471949	5.8e-02
NoTimeMedium	8103862	22096	2.7e-03
NoTimeTight	8103862	7484	9.2e-04
OneSidedLoose	8103862	226646	2.8e-02
OneSidedMedium	8103862	9749	1.2e-03
OneSidedTight	8103862	3238	4.0e-04
TwoSidedNoTime	8103862	8375	1.0e-03
TwoSided	8103862	1217	1.5e-04
NoTimeTight&&TwoSided	8103862	12	1.5e-06

- I worked on the beam-induced background (BIB) offline code and had to validate the flags that say that a given event has beam-induced background overlapped to a physics event.
- The goals of this analysis was:
- **✓ Test the main available flags**
- ✓ Identify the working flags and their efficiency
- **✓ Run on the BIB Monte Carlo sample**
- ✓ Run on a standard ATLAS run physics stream and background stream

References

•ATL-COM-DAPR-2012-001:

Beam Background Identification Method

•https://twiki.cern.ch/twiki/bin/vie wauth/Atlas/NonCollisionBackgro undsRunTwo/