

CMS

Inclusive tt + single top (SM) cross-section measurements

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22 – 27, 2019

C. Escobar on behalf of the ATLAS and CMS Collaborations

Instituto de Física Corpuscular (IFIC) - CSIC/UV

Introduction

The top quark is the heaviest known elementary particle.

At hadron colliders, top quarks are produced:

- Predominantly in **pairs** (tt) via the flavour-conserving strong interaction.
- Alternatively, **singly** through the electroweak interaction.

The top quark was discovered by CDF/D0 at Tevatron in 1995 in $t\bar{t}$ events.

• The single top-quark production was discovered in 2009 by CDF/D0 and observed in 2011 by ATLAS/CMS.

Why is interesting?

- Unique quark:
 - Decays before hadronising.
 - Most of its properties can be directly measured.
- Allows to test pQCD at NNLO precision (fixed-order).
- Constrains proton PDFs, $\alpha_{\rm S}$, top-quark pole mass.
- Window to New Physics.
- Main background in plenty of BSM searches.
- The tWb vertex can be studied at production and the decay (e.g. direct measurement of CKM element |V_{tb}|)

Contents

Will focus on most recent publications using Run 1 data (7 and 8 TeV) and Run 2 data (13 TeV)

- tt inclusive production cross-section analyses:
 - CMS tt (dilepton) (EPJC 79 (2019) 368)
 - CMS tī (lepton+ had. τ) (<u>CMS-PAS-TOP-18-005</u>)
 - ATLAS tt̄ (dilepton (eµ)) at 13 TeV (<u>ATLAS-CONF-2019-041</u>)
 - ATLAS tī (lepton+jets) at 13 TeV (<u>ATLAS-CONF-2019-044</u>)
- single top-quark inclusive production cross-section analyses:
 - ATLAS+CMS combinations of single top-quark production cross-section measurements and combinations of [f_{LV}V_{tb}] determinations from Run 1 (<u>JHEP 05 (2019) 088</u>).
 - CMS t-channel at 13 TeV (arXiv:1812.10514)
 - ATLAS t-channel at 13 TeV (JHEP 04 (2017) 086)
 - CMS tW (dilepton) at 13 TeV (<u>JHEP 10 (2018) 117</u>)

Inclusive tt cross-section measurements

NNLO+NNLL

$\sigma_{t\bar{t}}$ (7 TeV) = 177.3	^{+3.7} _{-3.2} pb	6.6%

- $\sigma_{t\bar{t}}$ (8 TeV) = 252.9 $^{+15.3}_{-16.3}$ pb 6.2%
- $\sigma_{t\bar{t}}$ (13 TeV) = 831.8^{+45.5}_{-49.9} pb 5.7%

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

Production cross-section measurements by ATLAS and CMS during Run 1 and 2 from tt process.

• Theory band: uncertainties due to μ_R and μ_F scale, PDF and the strong coupling.

• All measurements in agreement with the SM predictions.

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

CMS $t\bar{t}$ cross-section (dilepton) at 13 TeV

- Event selection: isolated opposite-sign dilepton pairs in ee/µµ/eµ categories.
- Events classified according to the number of jets (N_{jets}) and number of b-tagged jets (N_{bjets}).
 - 12 regions in N_{jets} and N_{bjets} categories \rightarrow sensitivity to constrain modelling uncertainties.
- Profile likelihood fit (PLH) in the visible region and extrapolated to the full phase space.
 - Fitted distributions: jet p⊤ in regions of lepton flavour and jet and b-tag multiplicities.

- Systematic uncertainties are taken as nuisance parameters and constrained in the fit.
- Dominant uncertainties:
 - Luminosity (2.5%).
 - Lepton id. and isolation (2.0%). Constrained using $ee/\mu\mu/e\mu$ events
 - PDF (1.1%).

Lepton isolation efficiencies directly measured in the $t\bar{t}$ dominated eµ+b-jet samples

- Fit result ($m_t^{MC} = 172.5 \text{ GeV}$): $\sigma_{t\bar{t}}$ (II) = 803 ± 2 (stat.) ± 25 (syst.) ± 20 (lumi.) pb. 4.0%
- In agreement with the NNLO+NNLL prediction (unc. 5.7%).

CMS $\ensuremath{t\bar{t}}\xspace$ cross-section (dilepton) at 13 TeV

Additionally, another fit is performed to extract simultaneously the tt cross-section and the mt^{MC}.

- Same number of jets and number of b-tagged jets categories as in the main measurement.
- The distribution of m_{lb}^{min} is used to maximases the sensitivity to m_t^{MC} .

- Systematic uncertainties are taken as nuisance parameters and constrained in the fit.
- Dominant uncertainties:
 - Luminosity (2.5%).
 - Lepton id. and isolation (2.2%).
 - NLO generator modelling (1.2%).
 - MC statistics (1.2%).

4.3%

- Fit result: $\sigma_{t\bar{t}}$ (II)= 815 ± 2 (stat.) ± 29 (syst.) ± 20 (lumi.) pb and m_t^{MC} = 172.33 ± 0.14 (stat.) $^{+0.66}_{-0.72}$ (syst.) GeV.
 - Correlation between $t\bar{t}$ cross-section and m_t^{MC} is 12%.
 - Used to extract m_t and α_s using fixed-order calculations (see <u>backup slides</u>).
- In agreement with the NNLO+NNLL prediction (unc. 5.7%).

0.4%

EPJC 79 (2019) 368

35.9 fb⁻¹, 13 TeV

CMS $t\bar{t}$ cross-section (lepton+had. τ) at 13 TeV

- CMS-PAS-TOP-18-005 35.9 fb⁻¹, 13 TeV
- Event selection: 1 lepton (e or μ) and \geq 3 jets (\geq 1 b-jet + one is identified as a hadronically decaying τ lepton).
- PLH to $m_T(I, p_T^{miss})$ in the two lepton (e, μ) categories.

- Dominant uncertainties:
 - $\tau_{had.}$ jet identification (4.5%).
 - Luminosity (2.5%).
 - tt background norm. (2.3%).
 - Pile-up (2.3%).

- Fit result: $\sigma_{t\bar{t}}$ ($I\tau_{had.}$) = 781 ± 7 (stat.) ± 62 (syst.) ± 20 (lumi.) pb. 8.4%
- In agreement with the NNLO+NNLL prediction (unc. 5.7%).

Additionally...

- R_{Iτhad/II} = 0.973 ± 0.009 (stat.) ± 0.066 (syst.)
 - · Consistent with unity (lepton flavour universality).
- $\Gamma_{t \to \tau \tau \tau b} / \Gamma_{total (II)} = 0.1050 \pm 0.0009 \text{ (stat.)} \pm 0.0071 \text{ (syst.)}.$
 - Consistent with the SM expectation value.

ATLAS tt cross-section (dilepton (eµ only)) at 13 TeV

- Event selection: isolated opposite-sign eµ pair and 1 or 2 b-jets.
- Cross-section measured by counting events:
 - Double-tagging technique suppress jet/b-tag uncertainties.

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b \left(1 - C_b\epsilon_b\right) + N_1^{\text{bkg}}$$
$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{\text{bkg}}$$

- Analyse 2015 and 2016 data separately
 - Combine using BLUE, taking into account uncorrelated uncertainties, in particular on luminosity
 - Combination gives 9% smaller uncertainty than that from all data treated as one sample
- Dominant systematics:
 - Luminosity (1.9%).
 - Background cross-section (single top-quark) (0.5%).
 - tt shower/hadronisation modelling (0.5%).
 - tī ISR/FSR modelling (<0.5%).
- Fit result: σ_{tt} (II) = 826 ± 3.6 (stat.) ± 11.5 (syst.) ± 15.7 (lumi.) ± 1.9 (beam) pb. 2.4%
 - Also measure fiducial cross-section with same precision.
- In agreement with the NNLO+NNLL prediction (unc. 5.7%).

Additionally...

• Extraction of m_t^{pole} from $\sigma_{t\bar{t}}$ (II) using prediction with the CT14 PDF set: $m_t^{pole} = 173.1^{+2.0}_{-2.1}$ GeV.

Experimental unc. ~1 GeV, rest due to prediction

 Ratios of cross-sections at different energies (combined with previous measurements)

- $\sigma_{t\bar{t}}(13/7)$ and $\sigma_{t\bar{t}}(13/8)$ **3.9 and 3.6%**
- Double ratios tt/Z (13/7 and 13/8) 3.0 and 2.5%
- In agreement with all the predictions within two standard deviations, with the exception of ABM12LHC for R_{tt̄/Z} (attributed to lower gluon density at high Bjorken-x in ABM12LHC compared to the other considered PDF sets)

ATLAS tt cross-section (lepton+jets) at 13 TeV

- Event selection: 1 lepton (e or μ) and \geq 4 jets (\geq 1 b-jet).
- PLH fit to different distributions (small sensitivity to $t\bar{t}$ modelling unc.) in the 3 regions (\geq 4j1b, 4j2b, \geq 5j2b).

- Systematic uncertainties are taken as nuisance parameters and constrained in the fit.
- Dominant uncertainties:
 - tt shower/hadronisation modelling (2.7%).
 - tt scale variation (2.6%).
 - Jet reconstruction (2.4%).
- Fit result: $\sigma_{t\bar{t}}$ (l+jets) = 829.7 ± 0.4 (stat.) $^{+35.3}_{-34.5}$ (syst.) pb. 4.3%
 - Also measure fiducial cross-section (separate fit) and extrapolated to the full phase space with similar precision.
- In agreement with the NNLO+NNLL prediction (unc. 5.7%).

Inclusive single top-quark cross-section measurements

NLO $\sigma_{t-ch} (7 \text{ TeV}) = 63.9 \stackrel{+2.9}{_{-2.5}} \text{ pb} \quad 4.5\%$ $\sigma_{t-ch} (8 \text{ TeV}) = 84.7 \stackrel{+3.7}{_{-3.2}} \text{ pb} \quad 4.4\%$ $\sigma_{t-ch} (13 \text{ TeV}) = 217.0 \stackrel{+9.0}{_{-7.7}} \text{ pb} \quad 4.1\%$

approx. NNL0 σ_{Wt} (7 TeV) = 15.7 ± 1.2 pb 7.6% σ_{Wt} (8 TeV) = 22.4 ± 1.5 pb 6.7% σ_{Wt} (13 TeV) = 71.7 ± 3.8 pb 5.3% NLO $\sigma_{s-ch} (8 \text{ TeV}) = 4.3 \pm 0.2 \text{ pb} \quad 4.7\%$ $\sigma_{s-ch} (8 \text{ TeV}) = 5.2 \pm 0.2 \text{ pb} \quad 3.9\%$ $\sigma_{s-ch} (13 \text{ TeV}) = 10.3 \pm 0.4 \text{ pb} \quad 3.9\%$

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec

- Different production rates for t and \bar{t} owing to proton PDF
- Direct sensitivity to V_{tb}

Combinations of cross-section measurements per production mode and per centre-of-mass energy.

- 10 input measurements from ATLAS and CMS at 7 and 8 TeV.
- Combinations done using the *iterative BLUE method*.
- Convergence reached when the central value and total uncertainty change by <1% compared to the previous iteration.

As an example...

$\sigma_{t-\text{chan.}}, \sqrt{s} = 8 \text{ TeV}$					
Combined cross-section	87.7 pb				
Uncertainty category	Uncertainty				
Uncertainty category	(%)	(pb)			
Data statistics	1.3	1.1			
Simulation statistics	0.6	0.5			
Luminosity	1.7	1.5			
Theory modelling	5.3	4.7			
Background normalisation	1.2	1.1			
Jets	2.6	2.3			
Detector modelling	1.8	1.6			
Total syst. unc. (excl. lumi.)	6.3	5.5			
Total syst. unc. (incl. lumi.)	6.5	5.7			
Total uncertainty	6.7	5.8			

- Experimental systematic uncertainties and their correlations carefully taken into account.
- Uncertainty on the top-quark mass dependence not included in the combinations (but impact provided when possible).
- Dominant systematics:
 - Theory modelling.
 - Jets.
 - Detector modelling.
 - Data statistics (just for s-channel combination).
- The stability of the combinations with respect to the correlation assumptions checked for the dominant uncertainty contributions → very stable results.

Combinations of cross-section measurements for each production mode and per centre-of-mass energy.

• All combinations are consistent with their corresponding SM predictions.

Combinations of $|f_{LV}V_{tb}|$ determinations from Run 1

Combinations of $|f_{LV}V_{tb}|$ determinations for each production mode and full combination.

- Experimental and theoretical systematic uncertainties and their correlations carefully taken into account.
- Combining $|f_{LV}V_{tb}|^2$ values since they are linear with the cross-section measurements.
- The term $|f_{LV}V_{tb}|^2$ does not depend on the production mode or the centre-of-mass energy.

Combined $ f_{\rm LV}V_{tb} ^2$	1.05		
Uncertainty category	Uncertainty		
Cheertanity category	[%]	$\Delta f_{\rm LV} V_{tb} ^2$	
Data statistical	1.8	0.02	
Simulation statistical	0.9	0.01	
Integrated luminosity	1.3	0.01	
Theory modelling	4.5	0.05	
Background normalisation	1.3	0.01	
Jets	2.6	0.03	
Detector modelling	1.6	0.02	
Top-quark mass	0.7	0.01	
Theoretical cross-section	4.3	0.04	
Total syst. unc. (excl. lumi.)	7.1	0.07	
Total syst. unc. (incl. lumi.)	7.2	0.08	
Total uncertainty	7.4	0.08	

$$|f_{\rm LV}V_{\rm tb}| = \sqrt{\frac{\sigma_{\rm meas.}}{\sigma_{\rm theo.}}}$$

 f_{LV} : model-independent left-handed form factor that encapsulates non-SM contributions.

- Uncertainties on the top-quark mass dependence included.
- Dominant systematics:
 - Theory modelling.
 - Theoretical cross-section.
 - Jets.

• The stability of the combinations with respect to the correlation assumptions is checked for the dominant uncertainty contributions → very stable results.

Combinations of |f_{LV}V_{tb}| determinations for each production mode and full combination.

• All combinations are consistent with the SM prediction.

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

t-channel cross-section at 13 TeV

Measuring t-channel production of single top quarks and antiquarks.

- Event selection: 1 e or μ , and multiple jets.
- Events classified by jet and b-jet multiplicity (2j1b, 3j1b, 3j2b) and BDT discriminators.
- Likelihood fit to BDT output in all categories.
- Systematic uncertainties are either taken as NP (profiled uncertainties) or using varied templates.
- Dominant uncertainties:
 - t-channel PS scale (13%).
 - t-channel PDF (8%).
 - t-channel μ_R and μ_F scale (6%).
- Fit result: σ_{t-ch} (t) = 136 ± 1 (stat.) ± 22 (syst.) pb, σ_{t-ch} (t) = 82 ± 1 (stat.) ± 14 (syst.) pb. 17%

- Event selection: 1 e or μ , and 2 jets (1 b-jet).
- Maximum likelihood fit to the NN output distribution.

- Systematic uncertainties are taken as nuisance parameters.
- Dominant uncertainties:
 - t-channel shower/hadronisation modelling (14%).
 - b-tagging efficiency (7%).
 - Top-quark background NLO matching (7%).
- Fit result: 18% $\sigma_{t-ch}(t) = 156 \pm 5 \text{ (stat.)} \pm 27 \text{ (syst.)} \pm 3 \text{ (lumi.) pb,}$ $\sigma_{t-ch}(\bar{t}) = 91 \pm 4 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 2 \text{ (lumi.) pb.}$ 20%
- In agreement with the NLO prediction (unc. 4% for t; unc. 5% for \overline{t}).

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

17

CMS t-channel cross-section at 13 TeV

- Total cross-section used to calculate V_{tb}:
- $|f_{LV}V_{tb}| = 1.00 \pm 0.08$ (exp.) ± 0.02 (theo.).

8.3%

- $|f_{LV}V_{tb}| = 1.07 \pm 0.09$ (exp.) ± 0.02 (theo.). 8.4%
- Ratio $R_{t-ch} = \sigma_{t-ch;t} / \sigma_{t-ch;\bar{t}}$ measured for different PDF set:

• $R_{t-ch} = 1.66 \pm 0.02$ (stat.) ± 0.05 (syst.) 3%

- MC sample size (5.1%).
- Data statistics (5.0%).
- $R_{t-ch} = 1.72 \pm 0.09$ (stat.) ± 0.18 (syst.) 11%

• Good agreement between the measurement and most predictions is found.

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

18

CMS tW (dilepton) cross-section at 13 TeV

Inclusive cross-section measurement requiring 1 lepton (e or μ) and at least one b-jet.

• Maximum likelihood fit to the distribution of a BDT in two of the categories + sub-leading jet p_T in 2j2b.

- DR used to account for $t\bar{t}$ interference.
- Dominant uncertainties:
 - Lepton efficiencies (3.3%).
 - Pile-up (3.3%).
 - Data statistics (2.8%).
 - tt background normalization (2.8%).

- Fit result: σ_{tw} (II) = 63.1 ± 1.8 (stat) ± 6.4 (syst) ± 2.1 (lumi) pb. 11%
- In agreement with NNLO prediction (5.3%).

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV

20

Summary of single top-quark cross-section measurements

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV

21

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

Conclusions

Probing Nature with many measurements in top-quark sector with ATLAS and CMS.

- Combinations between ATLAS and CMS results using full Run 1 published.
- First measurements exploiting Run 2 data are now being published, achieving high-precision results.
- So far, all measurements are consistent with the SM predictions.
 - No sign of new physics yet with the achieved precision.
- Next generation of new exciting results to come with study of full Run2 data from LHC! Stay tuned!
 - ATLAS Top Physics Results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>.
 - CMS Top Physics Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>.

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22 – 27, 2019

BACKUP

Inclusive tt + single top (SM) cross-section measurements

Introduction

The top quark is the heaviest known elementary particle.

At hadron colliders, top quarks are produced:

- Predominantly in pairs (t\bar{t}) via the flavour-conserving strong interaction.

• Alternatively, **singly** through the electroweak interaction.

The top quark was discovered by CDF/D0 at Tevatron in 1995 in tt events.

• The single top-quark production was discovered in 2009 by CDF/D0 and observed in 2011 by ATLAS/CMS.

ATLAS and CMS detectors

General purpose detectors at the LHC

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV

HCAL

FORWAK CALORIA

MUON CHAMBERS

Summary

Summary of several top-quark related production cross section measurements, compared to the corresponding theoretical expectations. All theoretical expectations were calculated at NLO or higher.

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV

CMS $t\bar{t}$ cross-section (dilepton) at 13 TeV

Additionally, another fit is performed to extract simultaneously the tt cross-section and the mt^{MC}.

• Allow the extracting m_t and α_s using fixed-order calculations with different sets of PDFs.

CMS $t\bar{t}$ cross-section (dilepton) at 13 TeV

 EPJC 79 (2019) 368

 35.9 fb⁻¹, 13 TeV

Additionally, another fit is performed to extract simultaneously the tt cross-section and the mt^{MC}.

• Allow the extracting m_t and α_s using fixed-order calculations with different sets of PDFs.

 The extraction of m_t is repeated in the pole mass scheme using the Top++ 2.0 program using the NNLO+NNLL prediction.

PDF set	$m_{\rm t}^{\rm pole}$ [GeV]
ABMP16	169.9 ± 1.8 (fit + PDF + α_S) $^{+0.8}_{-1.2}$ (scale)
NNPDF3.1	173.2 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.3}$ (scale)
CT14	173.7 ± 2.0 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)
MMHT14	173.6 ± 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)

Inputs: ATLAS and CMS individual |f_{LV}V_{tb}|² determinations and their experimental uncertainties.

	<i>t</i> -channel	<i>t</i> -channel	t-channel	<i>t</i> -channel	tW	tW	tW	tW	s-channel
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS
	$8 { m TeV}$	$8 { m TeV}$	$7 { m TeV}$	$7 { m TeV}$	$8 { m TeV}$	$8 { m TeV}$	$7 { m TeV}$	$7 { m TeV}$	$8 { m TeV}$
$\overline{\left f_{ m LV} V_{tb} ight ^2}$	1.06	0.99	1.06	1.05	1.03	1.05	1.07	1.02	0.92
Uncertainties:									
Data statistical	0.01	0.03	0.03	0.06	0.06	0.09	0.18	0.21	0.15
Simulation statistical	0.01	0.01	0.02	0.02	0.01	0.03	0.02	_	0.11
Integrated luminosity	0.02	0.03	0.02	0.02	0.05	0.03	0.07	0.04	0.05
Theory modelling									
ISR/FSR, ren./fact. scale	0.04	0.02	0.03	0.04	0.09	0.13	0.05	0.03	0.06
NLO match., generator	0.03	0.05	0.02	0.04	0.03	_	0.11	_	0.10
Parton shower	0.02	_	_	0.01	0.02	0.15	0.16	0.10	0.02
PDF	0.01	0.02	0.03	0.01	0.01	0.02	0.02	0.02	0.03
DS/DR scheme	_	_	—	_	0.04	0.02	_	0.06	_
Top-quark $p_{\rm T}$ rew.	_	_	—	—	_	< 0.01	_	_	_
Background normalisation									
Top-quark bkg.	< 0.01	0.02	0.02	0.01	0.02	0.02	0.06	0.06	0.05
Other bkg. from sim.	0.01	< 0.01	< 0.01	0.03	0.02	0.03	0.09	0.04	0.05
Bkg. from data	< 0.01	0.02	0.01	0.01	< 0.01	_	0.02	_	0.01
Jets									
JES common	0.03	0.04	0.08	0.01	0.05	0.04	0.17	0.15	0.05
JES flavour	< 0.01	_	0.02	_	0.02	_	_	_	0.01
JetID	< 0.01	_	0.01	_	< 0.01	_	0.05	_	0.01
JER	< 0.01	0.01	0.02	< 0.01	0.07	0.01	0.02	0.04	0.11
Detector modelling									
Leptons	0.02	0.01	0.03	0.04	0.03	0.02	0.07	0.05	0.02
HLT (had. part)	_	_	_	0.02	_	_	_	_	_
$E_{\rm T}^{\rm miss}$ scale	< 0.01	< 0.01	0.03	< 0.01	0.06	< 0.01	_	0.03	0.01
$E_{\rm T}^{\rm miss}$ res.	< 0.01	_	_	_	< 0.01	_	_	_	0.01
b-tag	0.01	0.02	0.04	0.02	0.01	0.01	_	0.02	0.07
Pile-up	< 0.01	0.01	< 0.01	0.01	0.03	< 0.01	0.11	0.01	0.01
Top-quark mass	0.01	< 0.01	0.01	_	0.05	0.05	_	_	_
Theoretical cross-section									
$PDF + \alpha_s$	0.03	0.03	0.04	0.04	0.06	0.07	0.08	0.07	0.03
Ren./fact. scale	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
Top-quark mass	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
E _{beam}	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total systematic uncertainty	0.09	0.09	0.13	0.10	0.18	0.23	0.34	0.24	0.24
Total uncertainty	0.09	0.10	0.13	0.12	0.19	0.24	0.38	0.32	0.28

12th International Workshop on Top Quark Physics (TOP2019) IHEP, Beijing (China) - September 22-27

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV

JHEP 05 (2019) 088

Combinations of $|f_{LV}V_{tb}|$ determinations from Run 1

Correlation matrix of the overall $|f_{LV}V_{tb}|^2$ combination. Each bin corresponds to a measurement in a given production mode, experiment, and at a given centre-of-mass energy.

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

Measuring t-channel production of single top quarks and antiquarks.

- Event selection: 1 e or μ , and 2 jets (1 b-jet).
- Maximum likelihood fit to the NN output distribution.

• Fit result:

 $\sigma_{t-ch}(t) = 156 \pm 5 \text{ (stat.)} \pm 27 \text{ (syst.)} \pm 3 \text{ (lumi.) pb,}$ 18% $\sigma_{t-ch}(\bar{t}) = 91 \pm 4 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 2 \text{ (lumi.) pb.}$ 20%

• In agreement with the NLO prediction (unc. 4% for t; unc. 5% for \overline{t}).

- Systematic uncertainties are taken as nuisance parameters.
- Dominant uncertainties:
 - t-channel shower/hadronisation modelling (14%).
 - b-tagging efficiency (7%).
 - $t\bar{t}$ and single top-quark NLO matching (<7%).

CMS t-channel cross-section at 13 TeV

Measuring t-channel production of single top quarks and antiquarks.

- Event selection: 1 e or μ , and multiple jets.
- Events classified by jet and b-jet multiplicity and BDT discriminators.

- Cross-sections measured from a likelihood fit to BDT output in all categories.
- Systematic uncertainties are either taken as nuisance parameters (profiled uncertainties) or using varied templates.
- Dominant uncertainties:
 - t-channel PS scale (~13%).
 - t-channel PDF (~8%).

> Nonprofiled uncertainties

- t-channel μ_R and μ_F scale (~6%).
- Fit result:

 $\sigma_{t-ch}(t) = 136 \pm 1 \text{ (stat.)} \pm 22 \text{ (syst.) pb, } 16\%$ $\sigma_{t-ch}(\bar{t}) = 82 \pm 1 \text{ (stat.)} \pm 14 \text{ (syst.) pb. } 17\%$

• In agreement with the NLO prediction (unc. 4% for t; unc. 5% for \overline{t}).

Carlos Escobar Instituto de Física Corpuscular (IFIC) - CSIC/UV

submitted to PLB

33

Summary of tt inclusive cross-section

Production cross-section measurements by ATLAS and CMS during Run 1 and 2 from tt process.

- The theory band represents uncertainties due to renormalisation and factorisation scale, PDF and the strong coupling.
- All measurements are in agreement with the SM predictions

Carlos Escobar

Instituto de Física Corpuscular (IFIC) - CSIC/UV