

 $12^{\rm th}$ International Workshop on Top Quark Physics 24 September 2019 - Beijing

Running of the top quark mass from pp collisions at $\sqrt{s} = 13 \text{ TeV}$

results from arXiv:1909.09193 (submitted to Phys. Lett. B)

Matteo Defranchis (DESY) - on behalf of the CMS Collaboration

in $\overline{\rm MS}$ scheme, running of QCD parameters $(\alpha_{\rm S},\,m_{\rm q})$ described by a set of RGEs

For
$$m_{\mathrm{q}}$$
: $\mu^2 \frac{\mathsf{d} m_{\mathrm{q}}}{\mathsf{d} \mu^2} = -\gamma(\alpha_{\mathrm{S}}) m_{\mathrm{q}}$

anomalous dimension γ calculated pQCD, and can be modified by BSM physics

- running of $\alpha_{\rm S}$ experimentally verified on a wide range of scales
- running of $m_{\rm c}$ and $m_{\rm b}$ investigated at HERA and LEP experiments
- ightarrow running of m_{t} experimentally investigated for the first time

starting point and final goal

Eur. Phys. J. C79 (2019) 368

inclusive analysis (presented last year)

- simultaneous measurement of inclusive $\sigma_{t\bar{t}}$ and m_t^{MC} from likelihood template fit
- $m_{
 m t}(m_{
 m t})$ extracted in $\overline{
 m MS}$ scheme @NNLO from measured $\sigma_{
 m t\bar{t}}$

starting point and final goal

from measured $\sigma_{t\bar{t}}$

inclusive analysis (presented last year)

simultaneous measurement of inclusive σ_t

and m_{\star}^{MC} from likelihood template fit

• $m_{\rm t}(m_{\rm t})$ extracted in $\overline{\rm MS}$ scheme @NNLO

Eur. Phys. J. C79 (2019) 368

- running: measure $m_{
 m t}(\mu)$ as a function of the scale $\mu=m_{
 m tar t}$
 - perform precise measurement of ${\rm d}\sigma_{\rm t\bar{t}}/{\rm d}m_{\rm t\bar{t}}$
 - extract running by comparing to differential theory predictions in $\overline{\rm MS}$ scheme

event selection and signal definition

2016 data: 35.9 fb^{-1} (13 TeV)

offline selection

- $e^{\mp}\mu^{\pm}$ with $p_{T_{1}(2)} > 25 (20) \text{ GeV}$
- jets with $\rm p_{T} > 30\,GeV$ considered
- b-tagging used to classify events
- kinematic reconstruction of $t\bar{t}$ system in events with ≥ 2 jets $\rightarrow m_{t\bar{t}}^{\text{reco}}$

signal definition and scale choice

- $t\bar{t}$ signal split into 4 subsamples in bins of parton-level $m_{t\bar{t}}$
- each subsample treated as independent signal, and corresponds to a bin in $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$
- representative scale μ_k assigned to each signal: $\mu_k = \text{centre-of-gravity of parton-level } m_{t\bar{t}}$

bin	range [GeV]	μ_k [GeV]
1	< 420	384
2	420-550	476
3	550-810	644
4	> 810	1024

likelihood fit of d $\sigma_{ m t\bar t}/{ m d}m_{ m t\bar t}$ and top mass extraction

- fit performed in categories of b-jet multiplicity and bins of $m_{
 m t\bar{t}}^{
 m reco}$
- systematic uncert. constrained within visible phase space
- dependence on $m_{
 m t}^{
 m MC}$ fully incorporated in the fit

response matrix embedded in the likelihood \Rightarrow maximum likelihood unfolding to parton-level

- $m_{\rm t}(m_{\rm t})$ extracted in each bin of $m_{\rm t\bar{t}}$ independently via χ^2 fit of theory predictions to data
- $m_t(m_t)$ converted to $m_t(\mu_k)$ using one-loop RGE solutions ($n_f = 5$)

NLO differential calculations obtained with version of MCFM where $m_{\rm t}$ is treated in $\overline{\rm MS}$ scheme (EPJ C74 (2014) 3167)

extraction of the running

running $r(\mu)$ is defined as ratio of $m_{
m t}(\mu)$ to reference mass $m_{
m t}(\mu_{
m ref})$

th: $r(\mu) = m_t(\mu)/m_t(\mu_{ref})$ exp: $r_k = m_t(\mu_k)/m_t(\mu_{ref})$

- r(µ) depends solely on RGE
- *r_k* benefits from cancellation of correlated uncertainties

 \rightarrow choice: $\mu_{ref} = \mu_2 = 476 \text{ GeV}$

extraction of the running

running $r(\mu)$ is defined as ratio of $m_{
m t}(\mu)$ to reference mass $m_{
m t}(\mu_{
m ref})$

th: $r(\mu) = m_t(\mu)/m_t(\mu_{ref})$ exp: $r_k = m_t(\mu_k)/m_t(\mu_{ref})$

- r(µ) depends solely on RGE
- *r_k* benefits from cancellation of correlated uncertainties

 \rightarrow choice: $\mu_{ref} = \mu_2 = 476 \text{ GeV}$

- result compared to value of $m_t(m_t)$ extracted at NLO from inclusive $\sigma_{t\bar{t}}$
- good agreement with RGE on a wide range of scales, up to $\mu > 1 \,\mathrm{TeV}$

- first experimental investigation of running of the top quark mass
- good agreement with RGE, up to $\mu > 1~{
 m TeV}$
- looking forward to NNLO calculations in the $\overline{\rm MS}$ scheme to probe the running at two-loops precision

summary and outlook in a nutshell

- first experimental investigation of running of the top quark mass
- good agreement with RGE, up to $\mu > 1~{
 m TeV}$
- looking forward to NNLO calculations in the $\overline{\rm MS}$ scheme to probe the running at two-loops precision

Thank you for your attention!

BACKUP

b-tagging efficiencies are determined in situ by exploiting the $t\bar{t}$ topology, separately in each bin of $m_{t\bar{t}}$

$$\begin{split} S_{1\mathrm{b}}^{k} &= \mathcal{L}\sigma_{\mathrm{t}\mathrm{t}}^{(\mu_{k})}\mathcal{A}_{\mathrm{sel}}^{k}\epsilon_{\mathrm{sel}}^{k}2\epsilon_{\mathrm{b}}^{k}(1-C_{\mathrm{b}}^{k}\epsilon_{\mathrm{b}}^{k})\\ S_{2\mathrm{b}}^{k} &= \mathcal{L}\sigma_{\mathrm{t}\mathrm{t}}^{(\mu_{k})}\mathcal{A}_{\mathrm{sel}}^{k}\epsilon_{\mathrm{sel}}^{k}C_{\mathrm{b}}^{k}(\epsilon_{\mathrm{b}}^{k})^{2}\\ S_{\mathrm{other}}^{k} &= \mathcal{L}\sigma_{\mathrm{t}\mathrm{t}}^{(\mu_{k})}\mathcal{A}_{\mathrm{sel}}^{k}\epsilon_{\mathrm{sel}}^{k}\left[1-2\epsilon_{\mathrm{b}}^{k}(1-C_{\mathrm{b}}^{k}\epsilon_{\mathrm{b}}^{k})-C_{\mathrm{b}}^{k}(\epsilon_{\mathrm{b}}^{k})^{2}\right] \end{split}$$

- ϵ_{sel}^k is the efficiency of the full selection in $m_{\text{t}\bar{\text{t}}}$ bin k
- $\epsilon^k_{\rm b}$ is the b-tagging efficiency in $m_{
 m t\bar t}$ bin k
- $C_{\rm b}^{k}$ represents the residual correlation of tagging the two b-jets
- \rightarrow all parameters are derived by the simulation and depend on the systematic uncertainties

binned Poisson Likelihood

$$L = \prod_{i} \frac{e^{-\nu_{i}} \nu_{i}^{n_{i}}}{n_{i}!} \prod_{j} \pi(\omega_{j}) \prod_{m} \pi(\lambda_{m})$$
$$\nu_{i} = \sum_{k=1}^{4} s_{i}^{k}(\sigma_{t\bar{t}}^{(\mu_{k})}, \vec{\lambda}, m_{t}^{MC}) + \sum_{j} b_{i}^{j}(\omega_{j}, \vec{\lambda})$$

- $\vec{\lambda}$ is the set of nuisance parameters
- ω_j is the normalization of background source j
- $\pi(\lambda_m)$ and $\pi(\omega_j)$ parametrize the prior knowledge of m^{th} nuisance parameter and j^{th} background normalization

fit performed in categories of b-tagged jet multiplicity and bins of $m_{t\bar{t}}^{\rm reco}$

- b-tag categories constrain b-tagging efficiencies
- $m_{
 m tar t}$ categories sensitive to different signals ightarrow constrain $\sigma^{(\mu_k)}_{
 m tar t}$
- categories with <2 jets, where kin reco cannot be performed, included in fit
 - increases visible phase space \Rightarrow reduces extrapolation uncertainties

for each category and sub-category, suitable differential distribution fitted

- $m_{\ell \mathrm{b}}^{\mathrm{min}}$ distribution used to constrain $m_{\mathrm{t}}^{\mathrm{MC}}$
- p_T of softest jet in event used to constrain JES
- systematic uncertainties profiled in Poisson likelihood and constrained in the visible phase space
- additional uncertainties assigned to extrapolation to full phase space (constraints in modelling uncertainties NOT considered in extrapolation)
- \rightarrow this procedure yields results that are unfolded to the parton level with maximum likelihood method

- differential predictions @NLO obtained with version of MCFM where $m_{\rm t}$ treated in $\overline{\rm MS}$ scheme (Eur. Phys. J. C74 (2014) 3167)
- only theory calculation available with top mass in $\overline{\mathrm{MS}}$ scheme
- evolution of QCD couplings at 1-loop, 5 flavours

• scale choice:
$$\mu_{
m r}=\mu_{
m f}=m_{
m t}(m_{
m t})$$

- interfaced with ABMP16_5_nlo PDF set: only available PDF set with $m_{\rm t}$ in $\overline{\rm MS}$ scheme, consistently with calculation

essence of this measurement: extract slope of NLO running, taking $m_{\rm t}(\mu_2)=m_{\rm t}(\mu_{\rm ref})$ as reference

•
$$r(\mu) = m_t(\mu)/m_t(\mu_2)$$

• $r_{k2} = m_t(\mu_k)/m_t(\mu_2), \ k = 1, 3, 4$

advantages

- slope $r(\mu)$ directly related to RGE prediction
- ratios r_{k2} benefit from partial cancellation of correlated uncertainties
- $\mu_{ref} = \mu_2$ to minimize correlations between extracted ratios

uncertainties in the ratios

- fit and extrapolation
- PDF and $\alpha_{\rm S}$ from ABMP eigenvectors
- scale variations in MCFM not meaningful here, as scale dependence is being investigated
- all correlations properly taken into account

running of m_t : results

 \rightarrow observed running consistent with RGE

$$\begin{split} r_{12} &= m_{\rm t}(\mu_1)/m_{\rm t}(\mu_2) = 1.030 \pm 0.018 ~\text{(fit)} ~^{+0.003}_{-0.006} ~\text{(PDF} + \alpha_{\rm S}) ~^{+0.003}_{-0.002} ~\text{(extr)} \\ r_{32} &= m_{\rm t}(\mu_3)/m_{\rm t}(\mu_2) = 0.982 \pm 0.025 ~\text{(fit)} ~^{+0.006}_{-0.005} ~\text{(PDF} + \alpha_{\rm S}) ~^{+0.004}_{-0.004} ~\text{(extr)} \\ r_{42} &= m_{\rm t}(\mu_4)/m_{\rm t}(\mu_2) = 0.904 \pm 0.050 ~\text{(fit)} ~^{+0.019}_{-0.017} ~\text{(PDF} + \alpha_{\rm S}) ~^{+0.017}_{-0.013} ~\text{(extr)} \end{split}$$

observed running parametrized as

$$f(x, \mu) = x [r(\mu) - 1] + 1$$

such that

- $f(1,\mu) = r(\mu)
 ightarrow \mathsf{RGE}$ running
- $f(0,\mu)=1
 ightarrow$ no running

 x_{\min} extracted from χ^2 fit to r_{k2} :

- correlations in extracted ratios studied with toy experiment procedure
- correlations fully taken into account in estimate of x_{min}

$$x_{\min} = 2.05 \pm 0.61$$
 (fit) $^{+0.31}_{-0.55}$ (PDF $+ \alpha_{\rm S}$) $^{+0.24}_{-0.49}$ (extr)

 \rightarrow compatible with RGE within 1.1σ