Top quarks and SUSY in ATLAS and CMS

Stephanie Majewski, University of Oregon

on behalf of the ATLAS and CMS
Collaborations

c

top

Top2019, Beijing, Chína 22-27 September 2019

Introduction

- The top quark plays an essential role in understanding the structure of the Standard Model and its extensions (e.g., Supersymmetry)
- "Classic" SM top measurements have played a key role in understanding tَ backgrounds to SUSY searches : e.g., radiation in $t \bar{t}$ events, differential cross-sections wrt $t \bar{t} p_{T}$, jet multiplicity

Introduction

- The top quark plays an essential role in understanding the structure of the Standard Model and its extensions (e.g., Supersymmetry)
- "Classic" SM top measurements have played a key role in understanding $\bar{t} \bar{t}$ backgrounds to SUSY searches : e.g., radiation in $t \bar{t}$ events, differential cross-sections wrt $t \bar{t} p_{T}$, jet multiplicity
- Naturalness continues to motivate direct searches for top partners, such as the stop in Supersymmetry

Introduction

EXPERIMENT

- The top quark plays an essential role in understanding the structure of the Standard Model and its extensions (e.g., Supersymmetry)
- "Classic" SM top measurements have played a key role in understanding tَ backgrounds to SUSY searches : e.g., radiation in $t \bar{t}$ events, differential cross-sections wrt $t \bar{t} p_{T}$, jet multiplicity
- Naturalness continues to motivate direct searches for top partners, such as the stop in Supersymmetry

\Rightarrow Close interplay between top measurements and searches enable exploration of the "stealth" stop region - has it been excluded?

Direct Stop Searches

- Cross-section for direct pair production determined by stop mass (other SUSY particles decoupled)
- Nominal experimental signature: $\bar{t}+$ MET
p
- First results based on the full Run 2 dataset (137-139 fb-1) appearing

LHC SUSY Cross Section Working Group

Direct Stop Searches

- Cross-section for direct pair production determined by stop mass (other SUSY particles decoupled)
- Nominal experimental signature: $\overline{t t}+$ MET

- First results based on the full Run 2 dataset ($137-139 \mathrm{fb}^{-1}$) appearing

- CMS 1-lepton analysis sensitive to heavy stops, based on $137 \mathrm{fb}^{-1}$
- Resolved and "merged" (boosted) top tagging
- "Lost lepton": $\mathfrak{t t}+$ single top, dominant in many signal regions, validated using control regions

Direct Stop Searches

- Detailed analysis of 39 signal regions
- Modified "topness" ($\mathrm{t}_{\text {mod }}$) and $\mathrm{M}_{\ell \mathrm{b}}$ discriminate between $\overline{t t}$ and signal
- Stop masses excluded up to 1.2 TeV

Direct Stop Searches

- Additional interpretation: 1 TeV exclusion for $50 \% / 50 \%$ BFs, 'natural' compressed higgsino-like $\tilde{\chi}_{1}$ sector

Direct Stop Searches

- Improved understanding of radiation in top events opened door to exploiting ISR for access to compressed stop region $m_{\tilde{t}_{1}}-m_{\tilde{\chi}_{1}^{0}} \sim m_{t}$
- ATLAS 0- and 1-lepton searches use recursive jigsaw technique to exploit events where $\tilde{t t}$ system recoils against ISR

Direct Stop Searches

- ATLAS search for 3-body stop decays, 1-lepton channel, based on $139 \mathrm{fb}^{-1}$
- Recurrent Neural Network used to compensate for variable \#jets in signal; output fed to shallow neural network

Direct Stop Searches

ATLAS-CONF-2019-017

Direct Stop Searches

ATLAS-CONF-2019-017

■ Dominant systematic uncertainties:

Systematic uncertainty [\%]	VR	SR
Total background uncertainty	7.4	20
$t \bar{t}$ hadronisation/fragmentation	3.0	16.3
JER	2.0	6.1
JES	1.4	4.6
$t \bar{t}$ hard-scattering	0.9	1.7
$t \bar{t}$ additional radiation	0.7	3.9
Flavour-tagging efficiency	0.5	1.7
$E_{\mathrm{T}}^{\text {miss }}$	0.5	1.3

tt hadronisation/ fragmentation uncertainties evaluated by comparing Powheg-Box + Pythia8 with Powheg-Box+Herwig7

Direct Stop Searches

- Greatly expanded sensitivity compared to previous analyses

PATLAS
 Stop Summary Plots

$$
\begin{aligned}
& \text { Run } 1, \sqrt{\mathbf{s}}=8 \mathrm{TeV}, 20 \mathrm{fb}^{-1} \\
& {[1506.08616]}
\end{aligned}
$$

ATLAS
 Stop Summary Plots

- Important considerations in the stealth stop region:
- 3-body effects near 2-body threshold (total width)
- spin correlations
- stop decays via RH vs LH tops
- impact of top mass

Czakon, et al
PRL 113 (2014) 201803

Cohen, et al JHEP 07 (2018) 042

Stealth Stop Searches

JHEP 03 (2019) 101

- CMS e μ search, based on $36 \mathrm{fb}^{-1}$
- $\mathrm{M}_{\mathrm{T} 2}$ main discriminating variable; endpoint @ m_{W} for $\mathrm{t} \bar{t}$ events, changes with $\Delta \mathrm{m}$ (stop-neutralino) and MET

$$
M_{\mathrm{T} 2}=\min _{\vec{p}_{\mathrm{T}, \mathrm{1}}^{\mathrm{miss}}+\vec{p}_{\mathrm{p}, 2}^{\text {miss }}=\vec{p}_{\mathrm{T}}^{\text {miss }}}\left(\max \left[m_{\mathrm{T}}\left(\vec{p}_{\mathrm{T}}^{\ell 1}, \vec{p}_{\mathrm{T}, 1}^{\mathrm{miss}}\right), m_{\mathrm{T}}\left(\vec{p}_{\mathrm{T}}^{\ell 2}, \vec{p}_{\mathrm{T}, 2}^{\mathrm{miss}}\right)\right]\right)
$$

Stealth Stop Searches

JHEP 03 (2019) 101

- CMS e μ search, based on $36 \mathrm{fb}^{-1}$
- $\mathrm{M}_{\mathrm{T} 2}$ main discriminating variable; endpoint @ m_{W} for $\bar{t} \bar{t}$ events, changes with $\Delta \mathrm{m}$ (stop-neutralino) and MET
- Results interpreted for stop masses between 170 and 250 GeV ;
$\tilde{\mathrm{t}} \rightarrow \mathrm{t} \chi_{0}$ decay mode considered

Stealth Stop Searches

arXiv:1903.07570, submitted to EPJC

- ATLAS SUSY interpretation of spin correlation measurement, e μ events, based on $36 \mathrm{fb}^{-1}$

- left-handed stops considered; signal events simulated with MadSpin \& tops allowed to be off-shell

Stealth Stop Searches

arXiv:1903.07570, submitted to EPJC

- ATLAS SUSY interpretation of spin correlation measurement, $e \mu$ events, based on $36 \mathrm{fb}^{-1}$

- left-handed stops considered; signal events simulated with MadSpin \& tops allowed to be off-shell

Stealth Stop Searches

ATLAS, EPJC 74 (2014) 3109 ATLAS, EPJC 75 (2015) 510

- $\bar{t} \bar{t}$ cross-section ratio allows unique testing ground for new physics
- Demonstrates potential impact of top mass on stop limits
- Could stealth stop bias the measurement of the top mass...? see arXiv:1909.09670, PLB 743 (2015) 218
 CMS, EPJC 79 (2019) 313

Patlas
 experiment
 Stealth Stop Searches

Cohen, SM, Ostdiek, Zheng arXiv:1909.09670
recast of top mass measurements with stop contamination

	All-hadronic	Di-leptonic	Semi-leptonic
$m\left(\tilde{t}_{1}\right)$	172.2 GeV	166.5 GeV	160.8 GeV
Bias	-0.5 GeV	-2.0 GeV	-1.3 GeV

Table 1: Summary of the maximum bias on the measured m_{t} due to stop contamination in each channel, assuming $m\left(\tilde{\chi}_{1}^{0}\right)=1 \mathrm{GeV}$. The top row shows the mass of the stop that maximally biases the experimentally measured mass from the Monte Carlo truth mass. The size of the bias in the measurement for each channel is shown in the bottom row.

Summary \& Outlook

- Over 20 years after its discovery, the massive top quark plays a central role in searching for new physics at the LHC
- Measurements have improved our background estimates and increased our sensitivity to new physics in challenging regions of phase space; continued synergies are needed!
- Care must be taken when interpreting limits in the 'stealth' region - a thorough treatment is needed to ensure stops are not hiding here!
- ATLAS and CMS results using the full Run 2 dataset have begun to appear; stay tuned for the full suite of updated stop searches

Additional Material

Direct Stop Searches

$$
\begin{aligned}
& \text { - Modified "topness" }\left(\mathrm{t}_{\mathrm{mod}}\right) \\
& \quad t_{\mathrm{mod}}=\ln (\min S) \text {, with } S=\frac{\left(m_{\mathrm{W}}^{2}-\left(p_{v}+p_{\ell}\right)^{2}\right)^{2}}{a_{\mathrm{W}}^{4}}+\frac{\left(m_{\mathrm{t}}^{2}-\left(p_{\mathrm{b}}+p_{\mathrm{W}}\right)^{2}\right)^{2}}{a_{\mathrm{t}}^{4}}
\end{aligned}
$$

modified from "topness" defined in: Graesser and Shelton, PRL 111, 121802 (2013)

Direct Stop Searches

	N_{J}	$t_{\text {mod }}$	$\mathrm{M}_{\mathrm{lb}}[\mathrm{GeV}]$
A	$2-3$	>10	≤ 175
B	$2-3$	>10	>175
C	≥ 4	≤ 0	≤ 175
D	≥ 4	≤ 0	>175
E	≥ 4	$0-10$	≤ 175
F	≥ 4	$0-10$	>175
G	≥ 4	>10	≤ 175
H	≥ 4	>10	>175

XO: Inclusive
X1: Untagged
X2: Boosted top
 X3: Resolved top

$$
\begin{aligned}
& \mathrm{I}: \mathrm{N}_{\mathrm{J}} \geq 5, \mathrm{~N}_{\mathrm{b}, \text { med }} \geq 1 \\
& \mathrm{~J}: \mathrm{N}_{\mathrm{J}} \geq 3, \mathrm{~N}_{\mathrm{b}, \text { soft }}^{-} \geq 1
\end{aligned}
$$

Direct Stop Searches

CMS-PAS-SUS-19-009

Table 8: The observed and expected yields for signal regions targeting scenarios of top squark production with a compressed mass spectrum.

$N_{\text {J }}$	$N_{\text {b,med }}$	$N_{\text {b, soft }}$	$\begin{gathered} E_{\mathrm{T}}^{\mathrm{miss}} \\ {[\mathrm{GeV}]} \end{gathered}$	Lost lepton	1ℓ (not from t)	$\begin{gathered} 1 \ell \\ (\text { from } \mathrm{t}) \end{gathered}$	$\mathrm{Z} \rightarrow v \bar{v}$	Total expected	Total observed
≥ 5	≥ 1	≥ 0	250-350	$403-30$	21_{-8}^{+8}	71 ± 71	17 ± 4	511_{-81}^{+81}	513
			350-450	108_{-15}^{+15}	$6.8_{-2.5}^{+2.6}$	12 ± 12	7.8 ± 1.6	134_{-19}^{+20}	140
			450-550	31_{-8}^{+8}	$2.5_{-0.9}^{+1.0}$	2.0 ± 2.0	2.9 ± 0.8	39_{-8}^{+9}	37
			550-750	11_{-4}^{+5}	$1.4_{-0.6}^{+0.7}$	0.3 ± 0.3	1.8 ± 0.5	14_{-4}^{+5}	10
			> 750	$1.8_{-1.0}^{+1.2}$	$1.9_{-1.9}^{+2.5}$	0.2 ± 0.2	0.3 ± 0.1	$4.1_{-2.2}^{+2.7}$	6
≥ 3	≥ 0	≥ 1	250-350	201_{-20}^{+21}	37_{-7}^{+7}	27 ± 27	10.4 ± 1.5	$276{ }_{-35}^{+35}$	268
			350-450	38_{-6}^{+7}	$11.6_{-2.2}^{+2.2}$	3.4 ± 3.4	4.3 ± 0.9	58_{-8}^{+8}	60
			450-550	11_{-3}^{+4}	$3.3{ }_{-0.6}^{+0.6}$	0.7 ± 0.7	1.7 ± 0.6	17_{-3}^{+4}	16
			550-750	$3.5_{-1.9}^{+2.6}$	$2.1_{-0.5}^{+0.5}$	-	1.1 ± 0.8	$6.6_{-2.1}^{+2.8}$	6
			> 750	$0.4_{-0.4}^{+0.4}$	$0.4_{-0.2}^{+0.2}$	0.02 ± 0.02	0.2 ± 0.4	$1.0_{-0.6}^{+0.6}$	4

Direct Stop Searches

CMS-PAS-SUS-19-009
Table 6: Summary of systematic uncertainties. The range of values reflect their impact on the estimated backgrounds and signal yields in different signal regions.

Source	Signal	Lost lepton	1ℓ background	$\mathrm{Z} \rightarrow v \bar{v}$
Data statistical uncertainty	-	$5-50 \%$	$4-30 \%$	-
Simulation statistical uncertainty	$6-36 \%$	$3-68 \%$	$5-70 \%$	$4-41 \%$
$\mathrm{t} \overline{\mathrm{t}} E_{\mathrm{T}}^{\text {miss }}$ modeling	-	$3-50 \%$	-	-
QCD scales	$1-5 \%$	$0-3 \%$	$2-5 \%$	$1-40 \%$
Parton distribution	-	$0-4 \%$	$1-8 \%$	$1-12 \%$
Pileup	$1-5 \%$	$1-8 \%$	$0-5 \%$	$0-7 \%$
Luminosity	$2.3-2.5 \%$	-	-	$2.3-2.5 \%$
$\mathrm{~W}+\mathrm{b}$ cross section	-	-	$20-40 \%$	-
$\mathrm{Z} \rightarrow v \nu$ estimate	-	-	-	$5-10 \%$
System recoil (ISR)	$1-13 \%$	$0-3 \%$	-	-
Jet energy scale	$2-24 \%$	$1-16 \%$	$1-34 \%$	$1-28 \%$
$E_{\mathrm{T}}^{\text {miss resolution }}$	-	$1-10 \%$	$1-5 \%$	-
Trigger	$2-3 \%$	$1-3 \%$	-	$2-3 \%$
Lepton efficiency	$3-4 \%$	$2-12 \%$	-	$1-2 \%$
Merged top tagging efficiency	$3-6 \%$	-	-	$5-10 \%$
Resolved top tagging efficiency	$5-6 \%$	-	-	$3-5 \%$
b tagging efficiency	$0-2 \%$	$0-1 \%$	$1-7 \%$	$1-10 \%$
Soft b tagging efficiency	$2-3 \%$	$0-1 \%$	$0-1 \%$	$0-5 \%$

Direct Stop Searches

CMS-PAS-SUS-19-005

Stealth Stop Searches

- CMS e μ search, based on $36 \mathrm{fb}^{-1}$
- $\mathrm{M}_{\mathrm{T} 2}$ main discriminating variable; endpoint @ mw for tt events, changes with $\Delta \mathrm{m}$ (stop-neutralino) and MET

$$
M_{\mathrm{T} 2}=\min _{\bar{p}_{\mathrm{T}, 1}^{\text {miss }}+\vec{p}_{\mathrm{T}, 2 \mathrm{~s}}=\vec{p}_{\mathrm{T}}^{\text {miss }}}\left(\max \left[m_{\mathrm{T}}\left(\vec{p}_{\mathrm{T}}^{\ell 1}, \vec{p}_{\mathrm{T}, 1}^{\text {miss }}\right), m_{\mathrm{T}}\left(\vec{p}_{\mathrm{T}}^{62}, \vec{p}_{\mathrm{T}, 2}^{\text {miss }}\right)\right]\right)
$$

Stealth Stop Searches

arXiv:1903.07570, submitted to EPJC

- $\Delta \eta$ provides more stringent limit than $\Delta \varphi$

QatıAs Stealth Stop Searches
Cohen, SM, et al JHEP 07 (2018) 042

