$t\bar{t} + Z/W$ in Atlas and CMS

Francisco Yumiceva

Florida Institute of Technology TOP2019, Beijing

Motivation

- ttW/Z are *important backgrounds* for $t\bar{t}H$ measurements and BSM searches
- Results presented in this talk:
 - CMS ttZ (78 fb⁻¹): <u>arXiv:1907.11270</u>
 - CMS ttW (36 fb⁻¹): <u>JHEP 08(2018)011</u>
 - Atlas ttW/Z (36 fb⁻¹): <u>Phys. Rev. D 99 (2019) 072009</u>

- Current datasets allow detail studies of the production of: $t\bar{t} + Z$, $t\bar{t} + W$
- Direct access to the *EWK coupling* of the top quark to the Z boson.
- These processes are very sensitive to new physics.

ttW and ttZ Signal Regions

Processes (ℓ=e,μ)		Channel	Signal Regions
$W \to \ell \nu$	$t\bar{t} \to \ell' + j$	SS2ł	12 (sign, flavor, N _b)
	$t\bar{t} \rightarrow dileptons$	3ł	8 (sign, N _j , N _b)
$Z \to \ell \ell$	$t\bar{t} \rightarrow jets$	OS2ł	4 (N _j , N _b)
	$t\bar{t} \to \ell' + j$	3ℓ	8 (sign, N _j , N _b)
	$t\bar{t} \rightarrow dileptons$	4१	4 (flavor, Nj, N _b)

- Need good lepton (electron & muon) reconstruction and identification from soft $p_T>10$ GeV
- Important background from nonprompt ℓ (fake leptons) originating from hadron decays, γ conversions or misidentified jets.
- Construct MVA to increase efficiency of selecting prompt ℓ and reduce fakes.
- Use CRs enriched in multijet QCD events and apply the matrix method (tight-to-loose likelihood) to estimate nonprompt l in SRs.
 - Fake rates & efficiencies parametrized as a function of ℓp_T and η .
 - CMS compute probabilities using a *corrected* p_T for the energy in the lepton isolation cone.

Nonprompt Lepton Background

CMS

• Syst. uncertainty from differences in the closure test.

Atlas

 Nuisance parameters corresponding to shifts from stat. uncertainties of the fake efficiency measurements.

Lepton Charge Misidentification (for ttW)

- Background from lepton charge misidentification is significant in the SS2² region
 - For muons this is negligible
 - For electrons could be up to < 2%
- The charge flip probability is estimated in an enriched $Z \rightarrow ee$ CR and parametrized as a function of lepton p_T and η .

Same-Sign Dilepton (SS2 ℓ) $t\bar{t}W$ Atlas

- Data: 36.1 fb⁻¹. Use single lepton triggers.
- MVA to suppress misidentified electron charge.
- Other backgrounds are from small SM processes

Opposite-Sign Dilepton (OS2Ł, ttZ)

450 0 ATLAS ATLAS 200 tīZ Data tīZ Data Events / √s = 13 TeV, 36.1 fb⁻¹ √s = 13 TeV, 36.1 fb⁻¹ Z + 2 HF400 tī Z + 2 HFltī 180 2L-Z-6j2b (post-fit) 2L-Z-5j2b (post-fit) Z + 0 HF Z + 1 HF Z + 0 HF Z + 1 HF 350 Other /// Uncertainty 160 Other /// Uncertainty 140 300 120 250 100 200 80 150 60 100 40 50 **É (** 20 0 Λ 0.4 -0.4 0.2 0.6 0.8 0.8 -1 -0.8 -0.6 -0.2 -1 -0.8 -0.6 -0.2 0.2 0.4 0.6 **BDT** output **BDT** output

 Z+HF separated in samples with 0, 1, and 2 HF

PRD 99 (2019) 072009

- tt estimated from CR BDT
- Others bkg from small SM

Trileptons (3 ℓ , $t\bar{t}Z$)

9/23/19

Tetraleptons (ttZ)

Trileptons (3ℓ, ttW)

PRD 99 (2019) 072009

tīW, tīZ Inclusive Cross Sections

	ttΖ	tt W
Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.9%	4.5%
Simulated sample statistics	2.0%	5.3%
Data-driven background statistics	2.5%	6.3%
JES/JER	1.9%	4.1%
Flavor tagging	4.2%	3.7%
Other object-related	3.7%	2.5%
Data-driven background normalization	3.2%	3.9%
Modeling of backgrounds from simulation	5.3%	2.6%
Background cross sections	2.3%	4.9%
Fake leptons and charge misID	1.8%	5.7%
$t\bar{t}Z$ modeling	4.9%	0.7%
$t\bar{t}W$ modeling	0.3%	8.5%
Total systematic	10%	16%
Statistical	8.4%	15%
Total	$\overline{13\%}$	22%

$$\sigma_{t\bar{t}Z} = 0.95 \pm 0.08$$
(stat) ± 0.10 (syst) pb 13%
 $\sigma_{t\bar{t}W} = 0.87 \pm 0.13$ (stat) ± 0.14 (syst) pb 22%

$$\sigma_{t\bar{t}Z}^{NLO} = 0.88^{+0.09}_{-0.11} \text{ pb}$$
 $\sigma_{t\bar{t}W}^{NLO} = 0.6^{+0.08}_{-0.07} \text{ pb}$

Use a profile likelihood fit

Fit configuration	$\mu_{tar{t}Z}$	$\mu_{tar{t}W}$	
Combined	1.08 ± 0.14	1.44 ± 0.32	
2ℓ -OS	0.73 ± 0.28	_	
$3\ell \ t\bar{t}Z$	1.08 ± 0.18	_	
2ℓ -SS and $3\ell \ t\bar{t}W$	_	1.41 ± 0.33	
4ℓ	1.21 ± 0.29	_	

Leading syst. are from ISR/FSR and generator comparisons

13%

ttW from CMS

- Data 35.9 fb⁻¹ with single lepton triggers.
- BDT constructed with N_{jets}, N_b, H_T, p_T^{miss} , p_{τ} , M_T, $\Delta R(\ell,j)$ •
- Fake leptons estimated using the tight-to-loose method with a lacksquarecorrected lepton p_T and parametrized in p_T and η .
- Charge misID and WZ also extracted with data driven methods.
- t(t)X=ttH, tqZ, tWZ, rare=multiboson \bullet

Francisco Yumiceva

tīz from CMS

- Data 77.5 fb⁻¹ (2016, 2017).
- Use trilepton and tetralepton channels.
- Improvements from previous analysis:
 - More inclusive lepton triggers: combination of single, dilepton, and trilepton triggers.
 - Dedicated MVA for lepton selection: 15% increase in prompt l efficiency and fake l efficiency reduced by 2-4 wrt old selection.

- Backgrounds:
 - t(t)X, X=H,W,WZ,Zq,Hq,HW,VV,tt are taken from simulation.
 - WZ(3 ℓ) CR with N_b=0.
 - $ZZ(4\ell)$ CR with reconstructed ZZ.
 - Fake leptons with CR with veto $Z(3\ell)$
 - Rare = VVV, $X\gamma$ events from simulation.

CMS Inclusive ttZ Cross Section arXiv:1907.11270

Systematic Uncertainties

Source	Uncertainty	Correlated between	Impact on	the $t\bar{t}Z$
	range (%)	2016 and 2017	cross section	on (%)
Integrated luminosity	2.5	×	2	
PU modeling	1–2	\checkmark	1	
Trigger	2	X	2	
Lepton ID efficiency	4.5-6	\checkmark	4	
Jet energy scale	1–9	\checkmark	2	
Jet energy resolution	0–1	\checkmark	1	
btagging light flavor	0–4	×	1	
btagging heavy flavor	1–4	×	2	
Choice in μ_R and μ_F	1–4	\checkmark	1	
PDF choice	1–2	\checkmark	1	
Color reconnection	1.5	\checkmark	<1	
Parton shower	1–8	\checkmark	1	
WZ cross section	10–20	\checkmark	3	\supset
WZ + heavy flavor	8	\checkmark	1	
ZZ cross section	10	\checkmark	1	
$t(\bar{t})X$ background	10–15	\checkmark	3	\supset
X γ background	20	\checkmark	1	
Nonprompt background	30	\checkmark	<1	
Rare SM background	50	\checkmark	2	
Stat. unc. in nonprompt bkg.	5-50	×	<1	
Stat. unc. in rare SM bkg.	5-100	×	<1	
Total systematic uncertainty			6	
Statistical uncertainty			5	Dragicion
Total			8	FIECISION
				Measurement at 8%
Lepton requirement	Meas	sured cross section	on	Th. NLO at 12%
3ℓ	0.97 ± 0.0	06 (stat) \pm 0.06 (s	yst) pb	Th. NLO+NNLL at 9%
4ℓ	0.91 ± 0.1	4 (stat) \pm 0.08 (s	yst) pb	<u>arXiv:1812.08622</u>
Total	0.95 ± 0.0	$0.05 ({ m stat}) \pm 0.06 ({ m stat})$	yst) pb	$\sigma_{t\bar{t}Z}^{NLO}=0.88^{+0.09}_{-0.11}~{ m pb}$

ttZ Differential Cross Section

- Calculated wrt leptonic observables that have very good resolution.
- The detector response matrix is mostly diagonal. Unfolding done without regularization.
- Measurement done in an enriched signal sample 3 ℓ , N_j≥1, N_b≥1.
- Limited by statistics (4 bins).

(normalized in backup)

Joscha Knolle's YSF talk

Angle of leptons in rest frame of the Z boson/dilepton system

9/23/19

Anomalous Couplings and EFT Interpretation

- Use ttZ events for a model independent BSM search using two approaches:
- Modified coupling coefficients (C_i^Z):

$$\mathscr{L}_{t\bar{t}Z}^{SM} = e\bar{u}(p_t) \left[\gamma^{\mu} (C_{1,V}^Z + C_{1,A}^Z) + \frac{i\sigma^{\mu\nu}q_{\nu}}{M_Z} (C_{2,V}^Z + C_{2,A}^Z) \right] v(\bar{p}_t) Z_{\mu}$$

$$\frac{\text{Vector \& Axial-vector}}{\text{Couplings}} \qquad \qquad \text{Magnetic \& Electric} \\ \text{Dipole Moments} & -10^{-3}$$

$$\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \frac{1}{\Lambda} \sum_{i} c_i \mathcal{O}_i + \frac{1}{\Lambda^2} \sum_{j} c_j \mathcal{O}_j$$

- and using the EFT approach:
- Four Wilson coefficients (c_{tZ} , $c_{tZ}^{[I]}$, $c_{\phi t}$, $c_{\phi q}^{-}$) out of 15 within the dim6top EFT model are relevant for ttZ.
- Found that the best observables are the $p_t(Z)$ and $\cos \theta^*$ distributions.

• Weights $w(p_t(Z), \cos \theta^*) = \frac{w_i^{BSM}}{w_i^{SM}}$ are computed to map the large BSM phase space.

Anomalous Coupling Results

Axial Vector Couplings

EW Dipole Moments

q= log-likelihood ratio with respect to the best-fit value (diamond)

CMS-TOP-18-009

9/23/19

EFT Interpretation

q= log-likelihood ratio with respect to the best-fit value (diamond)

Summary EFT Results

- Atlas results
 - ttW: $\sigma_{t\bar{t}W} = 0.87 \pm 0.13$ (stat) ± 0.14 (syst) pb
 - ttZ: $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08$ (stat) ± 0.10 (syst) pb
- CMS results
 - ttW: $\sigma_{t\bar{t}W} = 0.77^{+0.12}_{-0.11}$ (stat)^{+0.13}(syst) pb
 - ttZ: $\sigma_{t\bar{t}Z} = 0.95 \pm 0.05$ (stat) ± 0.06 (syst) pb
- Ongoing work to analyze the full Run2 data and expand the differential cross sections.
- Experimental precision challenging the current theory predictions.
- Sensitive ttZ observables allow us to probe a large BSM phase space.
- References:
 - CMS ttZ (78 fb⁻¹): <u>arXiv:1907.11270</u>
 - CMS ttW (36 fb⁻¹): <u>JHEP 08(2018)011</u>
 - Atlas ttW/Z (36 fb⁻¹): Phys. Rev. D 99 (2019) 072009

Backup Slides

ttW and ttZ from Atlas

- Data: 36.1 fb⁻¹. Use single lepton triggers.
- MVA to distinguish prompt *l* from nonprompt *l* originating from hadron decays, *γ* conversions or jets misidentified.
- MVA to suppress misidentified electron charge (SS channel).
- Control regions to characterize backgrounds:
 - Charge-flip CR: remove charge requirement.
 - Fake leptons CR: matrix method (tight-to-loose likelihood)
 - Several orthogonal samples produced by inverting lepton charge or flavor, and N_{jets}

Processes (ℓ=e,µ)		Channel	Signal Regions	
$W \to \ell \nu$	$t\bar{t} \to \ell + j$	SS2l	12 (sign, flavor, N _b)	
	$t\bar{t} \rightarrow dileptons$	3l	8 (sign, N _j , N _b)	
$Z \rightarrow \ell \ell$	$t\bar{t} \rightarrow jets$	OS2ℓ	4 (N _j , N _b)	
	$t\bar{t} \to \ell' + j$	3l	8 (sign, N _j , N _b)	
	$t\bar{t} \rightarrow dileptons$	4 <i>l</i>	4 (flavor, Nj, N _b)	

PRD 99 (2019) 072009

9/23/19

Francisco Yumiceva

Atlas

Variable	2ℓ -Z-6j1b	2ℓ -Z-5j2b	2ℓ -Z-6j2b		
Leptons	= 2, same flavor and opposite sign				
$m_{\ell\ell}$	$ m_{\ell\ell} - m_Z < 10 \mathrm{GeV}$				
$p_{\rm T}$ (leading lepton)	$> 30 \mathrm{GeV}$				
$p_{\rm T}$ (subleading lepton)	$> 15 \mathrm{GeV}$				
$n_{b-\mathrm{tags}}$	1	≥ 2	≥ 2		
n _{jets}	≥ 6	5	≥ 6		

Requirement	2ℓ -SS(p,m)-1b	2e-SS(p,m)- $2b$	$e\mu$ -SS(p,m)-2b	2μ -SS(p,m)- $2b$	-
$n_{b-\mathrm{tags}}$ F^{miss}	=1	≥ 2 > 40 GeV	≥ 2 > 40 GeV	≥ 2 > 20 GeV	-
E_{T} H_{T}	2 40 Gev	> 40 GeV	0 GeV	20 Gev	
$p_{\rm T}$ (leading lepton)		> 27	7 GeV		
$p_{\rm T}$ (subleading lepton) $n_{\rm inter}$	> 4	> 27	/ GeV > 4	> 2	
Z veto	$ m_{\ell\ell}$ -	$ m_Z > 10 \mathrm{GeV}$	in the $2e$ and 2μ	regions	_
Region Z_2 lepto	ons p_{T4}	p_{T34}	$ m_{Z_2} - m_Z $	$E_{\mathrm{T}}^{\mathrm{miss}}$	$n_{b-\mathrm{tags}}$
4 ℓ -DF-1b $e^{\pm}\mu^{\mp}$	-	$> 35 \mathrm{GeV}$	_	_	1
4 ℓ -DF-2b $e^{\pm}\mu^{\mp}$	$> 10 \mathrm{GeV}$	_	_	_	≥ 2
4 ℓ -SF-1b $e^{\pm}e^{\mp}, \mu^{\pm}$	$^{\perp}\mu^{\mp}$ –	$> 25\mathrm{GeV}$	$\begin{cases} > 10 \text{GeV} \\ < 10 \text{GeV} \end{cases}$	$> 40 \mathrm{GeV}$ $> 80 \mathrm{GeV}$	1
4 ℓ -SF-2b $e^{\pm}e^{\mp}, \mu^{\pm}$	$^{\pm}\mu^{\mp} > 10 \mathrm{GeV}$	_	$\begin{cases} > 10 \text{GeV} \\ < 10 \text{GeV} \end{cases}$	$ \left.\right\}$ > 40 GeV $\left.\right\}$	≥ 2
Variable	3ℓ-Z-1	lb4j 3ℓ-Z-2b	o3j 3ℓ-Z-2b4j	3ℓ-noZ	2-2b4j
Leading lepton			$p_{\rm T} > 27 { m GeV}$	V	
Other leptons	$p_{\rm T} > 20 {\rm GeV}$				
Sum of lepton charges ± 1					
Z requirement (OSSF	' pair)	$ m_{\ell\ell} - m_Z <$	$< 10 { m GeV}$	$ m_{\ell\ell} - m_Z $	$> 10 \mathrm{GeV}$
$n_{ m jets}$		≥ 4	$3 \geq 4$	\geq	4
$n_{b ext{-tags}}$		$1 \geq$	$\geq 2 \qquad \geq 2$	\geq	2

Francisco Yumiceva

Opposite-Sign Dilepton (OS2l, ttZ)

• Slides in progress