

Experimental Summary

12th International Workshop on Top Quark Physics

Beijing – 22nd - 27th September, 2019

Disclaimer: Impossible to cover wealth of top physics, apologies in advance for having not shown your favorite result.

Andreas Jung (Purdue University)

September 27th, 2019

The past...

A. Jung

1000's events

Searches...

- SM top quark ?
- Multi-differential
- Precision measurements

The present...LHC Run II

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 7, 8, 13 TeV

"Obstacles"...

- Vast amount of information most intense week I had in quite a while
- Talks range anywhere between ~30 to up to 72 distributions shown in a single talk
- Also heard: "Apologies for being wordy here"

Modeling & Tuning

Mackay

- Enormous amount of parameters to compare
- Modeling of ttbar system is the limiting uncertainty

- Ist measurement of UE modeling in dilepton channel
 - MPI effects visible, CR not quite yet

Modeling & Tuning

Mackay

- Enormous amount of parameters to compare
- Modeling of ttbar system is the limiting uncertainty

Inclusive cross sections

Escobar

• Measurements cover 2, 5, 8 and 13 TeV – agreement with the SM

Inclusive cross sections Escobar

- Experimental uncertainty: 2.4% (!) need a lot more discussion to benefit !
 Results indicate lower top mass...
 - A. Jung

Inclusive cross sections

A. Jung

Differential cross sections BOISVERT

- Enormous amount of differential cross section measurements at ATLAS & CMS – impossible to summarize in 1 slide.
- Expect even more n-dimensional distributions

The top p_ saga...

 Many Run I & Run II top pT measurements at ATLAS/CMS not described by NLO and most MCs – pQCD calculation do a better job

Data is more soft: consistently seen in all decay channels, also at 13 TeV

 \rightarrow The pT spectra in 8 TeV are described by pQCD NNLO calculations, but \rightarrow Indications of a slope wrt NNLO in 13 TeV data

The top p_ saga...continued Boisvert

TOP2019 Beijing – Experimental summary

A. Jung

TOP2019 Beijing – Experimental summary

A. Jung

Top Quark Properties...

Goldouzian

Production asymmetry due to NLO interferences

A. Jung

A. Jung

Top Quark Properties... Goldouzian

- ATLAS and CMS completed detailed studies of top quark's spin correlation, and polarization (CMS)
 - Initial deviations of > 3 SD seen by ATLAS, not confirmed by CMS (only ~ 1SD)

35.9 fb⁻¹ (13 TeV)

-- NLO, uncorrelated

0.5

COSO

---- NLO, SM

Most precise variable cosφ

CMS

Unfolded data

POWHEGV2 + PYTHIA8

Stat 🕀 Svet - -

0

-0.5

A. Jung

MG5 aMC@NLO + PYTHIA8 [FxFx]

dcosp

-10

0.7

0.6

0.5

1.05

0.95

Theory Data

0.4

Stat

uncertainty appropriate ?

0.97 ± 0.05 (stat+syst) – Solve puzzle till TOP2020...

CMS

C

Cnn

-D

A^{lab}cos

C_{rr}

- Data

tt+X: Highlights

Li, Yumiceva, Quin

tt+X: Highlights

Li, Yumiceva, Quin

A. Jung

ttH, Top Yukawa coupling Vasquez Schroeder

Associated Higgs production only direct access to Yukawa coupling

A. Jung

Half time...

...made it through ~54 distributions

Breakfast burrito

Chinese food is great but will be back to US tomorrow: the "top quark diet"...

Burger meal, fried cheese Nuggets

Pizza triple Cheese + Meat lover + Bacon

Breakfast burrito (1900 cals)

Burger meal, fried cheese Nuggets (2000 cals)

Pizza triple Cheese + Meat lover + Bacon (2000 cals)

Breakfast burrito (1900 cals)

Nachos+Dip, Olive Garden (2000 cals)

Burger meal, fried cheese Nuggets (2000 cals)

Dessert: Milk shake,

(1800 cals)

Pizza triple Cheese + Meat lover + Bacon (2000 cals)

No Soda, no Latte,

Top mass – direct methods Castro

Direct measurements combined using BLUE - consistent among methods/channels • CMS & ATLAS reach $\delta m_{\rm m}$ = 0.28% **ATLAS+CMS** Preliminary m_{top} summary,√s = 7-13 TeV May 2019 LHC*top*WG

CMS: all-jets + l+jets

$$m_{top} = 172.26 \pm 0.61 \text{ GeV}$$

 $\delta m_t / m_t = 0.36\% (!)$

• ATLAS: soft muon tag + displaced vertex, 13 TeV

$$m_{top} = 174.48 \pm 0.78 \text{ GeV}$$

 $\delta m_t/m_t = 0.45\% (!)$

In context of LHCtopWG

• Time for another LHC combination ?

CMS, I+jets CMS, dilepton CMS, all jets 165 170 TOP2019 Beijing – Experimental summary

<u> Top mass – alternative</u>

<u> Top mass – alternative</u>

Castro

ATLAS+CMS Preliminary LHC*top*WG m_{top} from cross-section measurements Sep 2019

Beyond the SM?

New friends for the top ?

Effective field theory...

New friends for the top? Majewski Nikiforou

- "stealth" top region not yet fully excluded
- tt modeling uncertainties dominate searches
 - Danger of "over-tuning" ? Minimized by specific phase space / control regions

35.9 fb⁻¹ (13 TeV)

1600

m_τ [GeV]

Observed limit (95% CL)

Median expected

68% expected

95% expected

1400

...apologies for being even shorter here!

 \overline{TT} , B(tZ) = B(bW) = 0.5

ATLAS+CMS

September 2019

Each limit assumes that all other processes are zer

FCNC

10⁻¹³

LHCtopWG

t→Hc

t→Hu

t→γc

t→γu

t→gc

t→gu

t→Zc

t→Zu

10⁻¹⁶

1800

A. Jung

1000

1200

σ [pb]

10

 10^{-3}

CMS

New friends for the top?

A. Jung

Schwanenberger Chatterjeen

• DM + Resonances, Impossible to summarize: 32 vs. 71 (!)

TOP2019 Beijing – Experimental summary

34

No BSM found (yet)...

But how to celebrate ...:

No alcohol sale on Sundays, but...

Indiana Looks to Finally End Prohibition-Era Restriction on Sunday Alcohol Sales

By Jim Vorel | January 12, 2018 | 10:53am Photo via Getty Images, Hannah Foslien

DRINK > NEWS > INDIANA SUNDAY ALCOHOL SALES

1918

Indiana goes dry as a state.

2018

On Wednesday, Feb. 28, Gov. Eric Holcomb signs Senate Bill 1, which allows Sunday carryout sales between noon and 8 p.m. by grocers, convenience stores and liquor stores.

• ...after about 86 years can buy alcohol again on Sundays

Future upgrade plans

A. Jung

Exciting times...

Computing is a critical resource for progress in experiments and theory...

78 reconstructed vertices

HL-LHC Ta Special thanks for sending me input

- Flavour tagging (example)
 - Important for many top quark selections
 - Track and secondary vertex bases taggers (default)
 - benefits mostly from improved tracker resolution/coverage
 - Good performance compared to run 2 and high PU
 - Performance at high η worse than for central jets

b-jet efficiency

flavour tagging performance

Well prepared for the challenges of top quark physics at the HL-LHC experiments

b-jet efficiency

The future...FCNC prospects

Updates included: \rightarrow presented by Castro

Extrapolations to HL-LHC: \rightarrow watch out for the bar:

<u>Caveats:</u> Some are "inclusive"...and also, we tend to do (much) better than projections, so we can hope to exclude more phase space

CERN-LPCC-2018-03

Future colliders

Durieux

Special thanks for sending me input

Mass extraction

A. Jung

Conclusions

Next year(s) will show what ~150 million tt events tell us
 Precision frontier of top quark physics

- \rightarrow HL-LHC: We will get about 3 billion t \bar{t} events
- \rightarrow Allows for multi-dimensional measurements of $\sigma,\,\alpha_{\text{S}},$

PDFs and any properties, associated production as well \rightarrow FCNCs and other statistically limited processes improve Maybe even a 100 TeV collider, it's not that big...

	vers
Deep-neural-network based b-tagging as basis for improvements in t	op analyses Annuel Guth @
Main Building 214	nt SP 46 17:50 - 17:55
Measurement of the forward-backward asymmetry in Liet	Pu-Sheng Chen
Main Building 214	18:00 - 18:05
Measurements of inclusive and differential cross-sections of the am pr TeV with the ATLAS Sector	roduction in the e+mu final state at 13 Knut Zoch 🥝
Differential measuremen of Production in CMS	Joscha Knolle 🥝
MaimBollong 21	18:20 - 18:25
Observation of the associated production of a top quark and a Z boso detector	on at sqrt(s)=13 TeV with the ATLAS Dylan Frizzell
The first measurement of the running of the top quark mass	Matteo Defranchis 🥝
Main Building 214	18:40 - 18:45

A. Jung

Thanks to local organizers !

YSF session, Poster session, Great dinner
Impressive great wall excursion...

Thanks to Hongbo and local organizing committee for a great workshop in a fantastic location!

...in case you need more than ~80 distributions shown so far...

Mass from cross section

Top Quark Asymmetries

Interference appears at NLO QCD:

- This is a forward-backward asymmetry at Tevatron
 No valence anti-quarks at LHC → t more central
- SM predictions at NLO (QCD+EWK)
 → Tevatron: AFB ~ 10 % vs. LHC: AC ~ 1 %

(These are NNLO pQCD predictions, there is also the PMC approach)

 $A_{\rm FB}^{t\bar{t}} = \frac{N(\Delta y_{t\bar{t}} > 0) - N(\Delta y_{t\bar{t}} < 0)}{N(\Delta y_{t\bar{t}} > 0) + N(\Delta y_{t\bar{t}} < 0)}$

• Experimentally: Asymmetries based on decay leptons or fully reconstructed top quarks $A_{\rm C}^{\rm lep} = \frac{N(\Delta|\eta_{\ell}| > 0) - N(\Delta|\eta_{\ell}| < 0)}{N(\Delta|\eta_{\ell}| > 0) + N(\Delta|\eta_{\ell}| < 0)}$

Spin correlations

- CMS
- Double-differential cross section allows to access spin correlation and polarization information in top quark events

Double diff. xsec

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^a_+ d \cos \theta^b_-} = \frac{1}{4} (1 + \frac{B^a_+}{B^a_+} \cos \theta^a_+ + \frac{B^b_-}{B^b_-} \cos \theta^b_- - \frac{C(a, b)}{C(a, b)} \cos \theta^a_+ \cos \theta^b_-)$$

- Charged lepton is perfect spin analyzer, well reconstructed as well
- Can probe top quark spin in 3 dimensions Sensitive to BSM physics (more spin corr's = s-channel dark matter; less spin corr's = new scalars) 0.140.12Fraction of Events 0.10 0.08 0.06 0.04 Schulze et al. 0.02 p Stop, 200 GeV 0.002.5 3.0 1.0 1.5 2.00.00.5 $\Delta \phi(\ell^+ \ell^-)$

Spin correlations

- CMS
- ATLAS measures dPhi in 1D and as a function of mttbar, B and C as well as cross correlations
- Discrepancy between NLO simulations and data at the 3σ level in dPhi at particle **and** parton level, also seen in differential in mttbar bins:
 - f_{SM} of 1 agrees with NLO SM, **observe**

A. Jung

 $f_{SM} = 1.25 \pm 0.02 \pm 0.06 \pm 0.04$

TOP2019 Beijing – Experimental summary

A. Jung

Spin correlations

• 2D as well:

ttH, Top Yukawa coupling T. Vasquez Schroeder

- Associated Higgs production only direct access to Yukawa coupling
 - Extremely complex final state

Indirect methods: incl. σ

- CMS measurement at 13 TeV, dilepton
- 12 categories based on N(b-jets), N(light jets)
- Employ m_{lb}^{min} , p_{T} , event yield
- Simultaneous fit to measure cross section and top mass
 - 888 ± 2 (stat.) ± 27 (syst.) ± 20 (theo.) pb
 - Extract MC mass from cross section:

 m_{top}^{MC} = 172.33 ± 0.14 (stat.) ± 0.66/0.72 (syst.) GeV

- \rightarrow Jet energy (0.57 GeV)
- \rightarrow MC statistics (0.36 GeV)
- \rightarrow Background (0.28 GeV)

Extract most precise MS mass:

PDF set	$m_{\rm t}(m_{\rm t})$ [GeV]
ABMP16	161.6 ± 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
NNPDF3.1	164.5 ± 1.6 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
CT14	165.0 ± 1.8 (fit + PDF + α_S) $^{+0.1}_{-1.0}$ (scale)
MMHT14	$164.9 \pm 1.8 \text{ (fit + PDF + }\alpha_S) \stackrel{+0.1}{_{-1.1}} \text{ (scale)}$

A. Jung

A. Jung

- Consistent picture in boosted and resolved phase space CMS-PAS-TOP-19-005
 Parton/Particle lovel results receive larger/reduced systematic uncertainties
- Parton/Particle level results receive larger/reduced systematic uncertainties
 CMS 13 TeV all-badronic combined resolved and boosted analysis
- CMS 13 TeV all-hadronic combined resolved and boosted analysis

The top p_ saga...continued V.Boisvert

Challenges/Perspectives

Direct methods:

- Most precise results, $\delta m_{f}/m_{f} = 0.28\%$ (!)
- Does not include theoretical "scheme" uncertainty
 No single large uncertainty left:

Fue Dhue 1 070 ²⁰ 0040) 040			1D	Hybrid	
Eur. Phys. J. C.	$C/9 \left(\frac{2019}{3} \right) $	$513_{\delta JSF^{2D}}$	$\delta m_{\rm t}^{\rm 1D}$	$\delta m_{\rm t}^{\rm hyb}$	δJSF ^{hyb}
	[GeV]	[%]	[GeV]	[GeV]	[%]
Experimental uncertainties					
Method calibration	0.03	0.0	0.03	0.03	0.0
JEC (quad. sum)	0.12	0.2	0.82	0.17	0.3
Intercalibration	-0.01	0.0	+0.16	+0.04	+0.1
MPFInSitu	-0.01	0.0	+0.23	+0.07	+0.1
Uncorrelated	-0.12	-0.2	+0.77	+0.15	+0.3
Jet energy resolution	-0.18	+0.3	+0.09	-0.10	+0.2
b tagging	0.03	0.0	0.01	0.02	0.0
Pileup	-0.07	+0.1	+0.02	- 0.05	+0.1
All-jets background	0.01	0.0	0.00	0.01	0.0
All-jets trigger	+0.01	0.0	0.00	+0.01	0.0
ℓ+jets Background	-0.02	0.0	+0.01	-0.01	0.0
ℓ+jets Trigger	0.00	0.0	0.00	0.00	0.0
Lepton isolation	0.00	0.0	0.00	0.00	0.0
Lepton identification	0.00	0.0	0.00	0.00	0.0
Modeling uncertainties					
JEC flavor (linear sum)	-0.39	+0.1	-0.31	-0.37	+0.1
Light quarks (uds)	+0.11	-0.1	-0.01	+0.07	-0.1
Charm	+0.03	0.0	-0.01	+0.02	0.0
Bottom	-0.31	0.0	-0.31	-0.31	0.0
Gluon	-0.22	+0.3	+0.02	-0.15	+0.2
b jet modeling (quad. sum)	0.08	0.1	0.04	0.06	0.1
b frag. Bowler-Lund	-0.06	+0.1	-0.01	-0.05	0.0
b frag. Peterson	-0.03	0.0	0.00	-0.02	0.0
semileptonic b hadron decays	-0.04	0.0	-0.04	-0.04	0.0
PDF	0.01	0.0	0.01	0.01	0.0
Ren. and fact. scales	0.01	0.0	0.02	0.01	0.0
ME/PS matching	-0.10 ± 0.08	+0.1	$+0.02 \pm 0.05$	$+0.07 \pm 0.07$	+0.1
ME generator	$+0.16 \pm 0.21$	+0.2	$+0.32 \pm 0.13$	$+0.21 \pm 0.18$	+0.1
ISR PS scale	$+0.07 \pm 0.08$	+0.1	$+0.10 \pm 0.05$	$+0.07 \pm 0.07$	0.1
FSR PS scale	$+0.23 \pm 0.07$	-0.4	-0.19 ± 0.04	$+0.12 \pm 0.06$	-0.3
Top quark $p_{\rm T}$	+0.01	-0.1	-0.06	-0.01	-0.1
Underlying event	-0.06 ± 0.07	+0.1	$+0.00\pm0.05$	-0.04 ± 0.06	+0.1
Early resonance decays	-0.20 ± 0.08	+0.7	$+0.42 \pm 0.05$	-0.01 ± 0.07	+0.5
CR modeling (max. shift)	$+0.37\pm0.09$	-0.2	$+0.22 \pm 0.06$	$+0.33 \pm 0.07$	- 0.1
"gluon move" (ERD on)	$+0.37\pm0.09$	-0.2	$+0.22 \pm 0.06$	$+0.33 \pm 0.07$	- 0.1
"QCD inspired" (ERD on)	-0.11 ± 0.09	-0.1	-0.21 ± 0.06	-0.14 ± 0.07	- 0.1
Total systematic	0.71	1.0	1.07	0.61	0.7
Statistical (expected)	0.08	0.1	0.05	0.07	0.1
Total (expected)	0.72	1.0	1.08	0.61	0.7

SM vacuum stability & EW fit

• Latest EW-fit by GFitter $m_t = 176.4 \pm 2.1 \,\mathrm{GeV}$

- → SM EW fit closer to the unstable boundary ? Beware of uncertainties...but could indicate SM is not enough to describe nature
- → Need more data!

A. Jung