Top quarks at next-generation lepton colliders

Gauthier Durieux (Technion)

TOP 2019 Beijing, 27 Sept.

The top-quark escaped scrutiny at the previous generation of lepton colliders.

At hadron colliders:

- \cdot top mass measurements are not theoretically clean,
- \cdot top electroweak couplings are difficult to access.

Leap into the future

Optimistic and speculative timelines:

Circular vs. linear

luminosity (on Z and W) vs. energy (for $t\bar{t}h$, hhX, etc.) upgradable to pp vs. stageable in energy higher beam quality vs. beam polarization

Circular vs. linear

luminosity (on Z and W) vs. energy (for $t\bar{t}h$, hhX, etc.) upgradable to pp vs. stageable in energy higher beam quality vs. beam polarization

Top-quark pair production

- $\cdot \sigma$ peaked at about 380 GeV
- · enhanced for a left-handed beam
- · fall-off as 1/s
- \cdot single-top contribution increasingly important

+ $W^+W^- \rightarrow t \bar{t}$ catching up at multi-TeV w/ unitarity breaking effects [Grojean, Wulzer, You, Zhang]

Top mass

as clean as it gets

Threshold

[Simon '19]

Mass extraction

+ sensitivity to/contamination from:

$$\Gamma_t: \sim 70 \text{ MeV from 2D fit}$$

 $y_t: \sim 20\% \text{ from 2D fit}$
 $\alpha_S : \sim \text{few 10}^{-4}$
EW couplings: ??!!

Gauthier Durieux - TOP 2019 - Beijing, 27 Sept.

$\begin{array}{l} \text{Radiative return } \left(e^+e^- \rightarrow t \overline{t} \gamma \right) \\ \text{from } \sqrt{s} = 500 \, \text{GeV}, \, 4 \, \text{ab}^{-1} \\ \text{from } \sqrt{s} = 380 \, \text{GeV}, \, 1 \, \text{ab}^{-1} \end{array}$

[ILC '19] [CLIC Top Paper '18]

+ comparison with kin. reco.: $\sim 100\,\text{MeV}$

Electroweak couplings

precise, global and robust

LHC TOP WG EFT standards

Joint theory effort under the auspices of the LHC TOP WG, with extensive feedback from experimentalists.

Make reasonable assumptions

- · focus a priori on processes and operators involving top quarks
- determine which contributions are relevant

Fix notation

- define d.of. Translate your results in these standards
 fix notation fix notation, to rease to provide simulations

[UFO model]

Discuss analysis strategies (one example)

- address the challenges of a global EFT
- highlight useful experimental outputs

[see also Recasting through reweighting, Cranmer Heinrich '17]

tbW coupling at the HL-LHC

W-helicity fractions, single top production, $t\bar{t}$ asymmetries:

[Déliot et al. '18]

Future lepton colliders

[GD et al. '18] [CLIC Top paper '18]

 \rightarrow clean and robust global analysis (very hard at hadron colliders)

Gauthier Durieux - TOP 2019 - Beijing, 27 Sept.

Polarization and energy lever arm

10% polarization costs \sim 5% of GDP

w.r.t.
$$P(e^+, e^-) = (\pm 30\%, \mp 80\%)$$
:
 $\cdot P(e^+)$ compensated by 140% lumi
 $\cdot P(e^+, e^-)$ // by 460% lumi

 $GDP \equiv \left[\det \operatorname{cov}(C_i, C_j)\right]^{1/n}$ 'global determinant parameter' geometrical average of constraints ratios are operator-basis independent [GD et al. '17]

[GD et al. '18]

Compositeness

Gauthier Durieux - TOP 2019 - Beijing, 27 Sept.

Top Yukawa

qqtt insensitive

Top Yukawa

- · contaminations from poorly constrained qqtt operators
- $\cdot~\sim$ 15% individual, \sim 150% global

HL-LHC prospect

 \cdot ~ 3% individual, ?? global

At lepton colliders $e^+e^- ightarrow t \overline{t} h$

- \cdot robust against *eett*, *ttZ*, *tt* γ modifications [1907.10619]
- $\cdot\ \sim 3\,\%$ at 550 GeV/4 ab $^{-1}$ or $1\,\text{TeV}/2.5\,\text{ab}^{-1}$ or $1.5\,\text{TeV}/2.5\,\text{ab}^{-1}$

[Fujii et al. '15] [Asner et al. '13] [CLIC top paper '18]

Top electroweak loops

top/Higgs interplay

Top electroweak loops

• At the Z pole

[Zhang, Greiner, Willenbrock '12]

- \cdot Higgsstrahlung and W-fusion through reweighing in $\rm MG5/AMC@NLO$
- Higgs decays

(excluding four-fermion operators, no top loop included in $e^+e^- o tar{t}$) Gauthier Durieux – TOP 2019 – Beijing, 27 Sept.

[GD, Gu, Vrionidou, Zhang '18]

Individual constraints (blobs)

- $\cdot\,$ competitive with the HL-LHC (e.g. on the top Yukawa $\mathit{C}_{t\varphi})$
- \cdot dominated by Higgs measurements (diboson improves with energy)

Global constraints (bars) (12 Higgs + 6 top op. floated)

- · large flat directions with 240 GeV run alone (not shown)
- $\cdot\,$ still improves the HL-LHC combination
- $\cdot\,$ more differential distributions would help further

Individual constraints (blobs)

- \cdot competitive with the HL-LHC (e.g. on the top Yukawa C_{tarphi})
- \cdot dominated by Higgs measurements (diboson improves with energy)

Global constraints (bars) (12 Higgs + 6 top op. floated)

- · large flat directions with 240 GeV run alone (not shown)
- $\cdot\,$ still improves the HL-LHC combination
- $\cdot\,$ more differential distributions would help further

Individual constraints (blobs)

- $\cdot\,$ competitive with the HL-LHC (e.g. on the top Yukawa $\mathit{C}_{t\varphi})$
- \cdot dominated by Higgs measurements (diboson improves with energy)
- \cdot loops in $e^+e^- \to t\bar{t}$ would improve its impact on ${\it C}_{t\varphi}$ and ${\it C}_{tG}$

Global constraints (bars) (12 Higgs + 6 top op. floated)

- · large flat directions with 240 GeV run alone (not shown)
- $\cdot\,$ still improves the HL-LHC combination
- $\cdot\,$ more differential distributions would help further

Contamination in Higgs operators

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. $\rightarrow 0$

Uncertainties on the top have a big effect on the Higgs

- · Higgsstr. run: insufficient
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus$ top@HL-LHC: top contam. in \bar{c}_{gg} only

Top FCNC

from below the $t\overline{t}$ the shold

$e^+e^- ightarrow t\, j$ at 380 GeV/1 ab $^{-1}$ and above

[CLIC BSM YR '18] [HL-LHC Flavour YR '18]

- \cdot compared to decay: black arrows
- compared to current limits ^{up}_{charm}
- compared to HL-LHC estimates ^{up} _{charm}
- · without beam polarization: blobs

quadratic optimal observables semileptonic final state, *WW* bkg

Top quarks at next-generation lepton colliders

The top quark so far escaped the scrutiny of lepton colliders.

They offer a unique opportunity for precise and robust determination of the top electroweak couplings and mass.

In new-physics parameter space, high-energy top-quark measurements are very complementary to Higgs ones.

Knowing top-quark couplings precisely is also indispensable for the Higgs precision program.

Searches for exotic top-quark interactions have outstanding reaches.

Extras

Statistically optimal observables

minimize the one-sigma ellipsoid in EFT parameter space

(*joint efficient* set of estimators, saturating the Cramér-Rao bound: $V^{-1} = I$, like MEM)

For small C_i , with a phase-space distribution $\sigma(\Phi) = \sigma_0(\Phi) + \sum_i C_i \sigma_i(\Phi)$, the stat. opt. obs. are the average values of $O_i(\Phi) = n \sigma_i(\Phi) / \sigma_0(\Phi)$.

e.g.
$$\sigma(\phi) = 1 + \cos(\phi) + C_1 \sin(\phi) + C_2 \sin(2\phi)$$

1. asymmetries: $O_i \sim \operatorname{sign}\{\sin(i\phi)\}$

2. moments:
$$O_i \sim \sin(i\phi)$$

3. statistically optimal: $O_i \sim \frac{\sin(i\phi)}{1 + \cos\phi}$

 \implies area ratios 1.9 : 1.7 : 1

Statistically optimal observables

- answer statistically the question "What observable?"
 - · for linear(ized) parameter dependences (EFT!)
 - $\cdot\,$ easiest when kinematics are fully determined
 - · ideal for clean environments
- exploit our physical understanding
 - $\cdot\,$ need modelling, no blind and expensive training
 - $\cdot\,$ extend to detector level with machine-learning techniques

[1805.00020]

- scale well with parameter-space dimensionality
 - · need no scan (unlike MEM)
 - · require only one discrete observable per d.o.f.
 - · cover efficiently all directions
- facilitate ideal theory estimates

$$\cdot \operatorname{cov}(C_i, C_j)^{-1} = \epsilon \mathcal{L} \int d\Phi \; \frac{\sigma_i(\Phi)\sigma_j(\Phi)}{\sigma_0(\Phi)} + \mathcal{O}(C_i)$$

(incl. total rate information)

Global determinant parameter

[GD, Grojean, Gu, Wang, '17]

In a *n*-dimensional Gaussian fit, with covariance matrix V, GDP $\equiv \sqrt[2n]{\det V}$ provides a geometric average of the constraints strengths.

Interestingly, GDP ratios are operator-basis independent!

- $\cdot \,$ as the volume scales linearly with coefficient normalization
- · as the volume is invariant under rotations
- \implies conveniently assess constraint strengthening.