Theory Summary

Laura Reina Florida State University

12th International Workshop on Top-Quark Physics IHEP- Beijing - September, 22-27 2019

Why a conference on top-quark physics?

• Top-quark large mass makes it special in the Standard Model

- \rightarrow Does not form bound states: easier access to its properties.
- → Large coupling to the Higgs boson $(y_t \approx 1)$: crucial in SM Higgs physics. \hookrightarrow think of $\mathbf{gg} \rightarrow \mathbf{H}$, and $\mathbf{t\bar{t}H}$ production.
- → $y_t \approx 1$: important indirect effects in all SM observables, including m_H . \hookrightarrow naturalness \longrightarrow see Liantao Wang's talk
- \rightarrow Best probe of SM fermion-mass generation mechanism. \rightarrow why fermion-mass hierarchy?
- \rightarrow Natural probe of high-energy behaviour of SM scattering amplitudes. \rightarrow unitarity violation?
- \rightarrow Together with M_H can determine the fate of our universe (!)
- ... hence an excellent probe of physics beyond the SM.
- Top physics has been at the core of the the Tevatron and the LHC physics program and will continue to be for the HL/HE-LHC upgrades, as well as for all future colliders currently under discussion.
 - \hookrightarrow **Precision tests** of SM framework $(t\bar{t}, t\bar{t} + X, m_t, t \text{ couplings}, \ldots).$
 - \hookrightarrow Searches for new signatures (exotic decays, FCNC, ...).

At a glance . . .

Huge statistics: 275 millions top quarks produced/exp in 139 fb⁻¹@13 TeV

 \rightarrow see Craig Wiglesworth's and Zhen Hu's talks

Very rich phenomenology: $| \longrightarrow ALL TALKS$ at Top 2019

- \hookrightarrow $t\bar{t}$ and single-t production $[m_t, \Gamma_t, V_{tb}]$
- \hookrightarrow $t\bar{t}H$ and tH production $[y_t]$
- $\hookrightarrow t\bar{t}W, t\bar{t}Z, t\bar{t}\gamma, t\bar{t}t\bar{t}, \dots [t \text{ couplings to } W, Z, \gamma, y_t]$

 \rightarrow Possible to test consistency with the SM and to explore new physics.

Why a conference on top-quark physics?

• Many important theoretical results in the last year.

- \rightarrow Distributions in $t\bar{t}$ production being constantly refined.
- \rightarrow More single-top measurements, first differential distributions.
- \rightarrow Improved studies $(t\bar{t}H, t\bar{t}b\bar{b}, t\bar{t}V)$.
- \rightarrow Systematic approach to study of anomalous top interactions (EFT).
- \rightarrow Reaching out to BSM scenarios through the top-quark portal.
- Interplay between theory and experiments essential at this stage.
 - \rightarrow When both theory and experiments have a way to reach comparable accuracy and improve it systematically.
 - \rightarrow When we need to extrapolate from today results to plan the future.

 \hookrightarrow TOP 2019: a unique opportunity to share, review, and refocus.

$t\bar{t}$ production: the main building block

Czakon, Fiedler, Mitov (2013): NNLO+NNLL QCD Czakon, Fiedler, Heymes, Mitov (2015-16): NNLO QCD, differential Czakon, Heymes, Mitov, Pagani, Tsinikos, Zaro (2017): NNLO QCD+NLO EW Czakon, Mitov, Poncelet (2019): NNLO QCD with top decays (NWA) \rightarrow see Alex Mitov's talk Catani, Devoto, Grazzini, Kallweit, Mazzitelli,

Sargsyan (2019) NNLO QCD, differential \hookrightarrow available in MATRIX

see Javier Mazzitelli's talk

$t\bar{t}$: NNLO distributions, with NNLO top decays

NNLO QCD vs ATLAS data: 2-dim

- \hookrightarrow Great reduction of scale error at NNLO vs NLO. Mostly small K factors.
- \hookrightarrow Both $m_t = 171.5$ GeV and $m_t = 172.5$ GeV seem to work.
- \hookrightarrow Improved MC error required to draw quantitative conclusions (apparent m_t sensitivity).

$t\bar{t}$: NNLO distributions, on-shell tops

Double-differential distributions

NEW: predictions for parton level CMS measurements using fully leptonic final state

 \hookrightarrow Mass value has smaller impact in p_T distributions.

 \hookrightarrow Data still softer than predictions, slighter better agreement with lower mass.

From Alex Mitov's talk : NNLO QCD $t\bar{t}$ +decays does not agree with same CMS data. \rightarrow Problem with unfolding? underestimated unfolding error?

Spin correlation in $t\bar{t}$ production: NNLO vs NLO

Important to avoid misunderstanding!

NLO and NNLO ratio can also be expanded in α_s , but the two differ, e.g.:

$$R^{\text{NNLO}} = \frac{1}{\sigma_0 + \alpha_s \sigma_1 + \alpha_s^2 \sigma_2} \left(\frac{d\sigma_0}{dX} + \alpha_s \frac{d\sigma_1}{dX} + \alpha_s^2 \frac{d\sigma_2}{dX} \right)$$
$$R_{\text{exp}}^{\text{NNLO}} = R_0 + \alpha_s R_1 + \alpha_s^2 R_2 + O(\alpha_s^3)$$

At NNLO the difference is tiny \rightarrow **Data do not agree with theory**

Top-quark precision physics: the case of m_t

The question is: Is there a theoretical hard limit on δm_t ? \hookrightarrow Determine precision game at future colliders.

Important to understand what we are measuring?

 \rightarrow see Michal Czakon's talk

and to carefully assess what is driving the exp. error so small?

"Renormalons are proxy for non perturbative effects"

 \rightarrow see Michal Czakon's talk [Ferrario Ravasio, Nason, Oleari, arXix:1810.10931]

Wb invariant mass has linear infrared sensitivity due to a final state jet, irrespective of the mass definition used.

Modeling at hadron colliders:

Study the effects by comparison of an event generator and analytic QCD predictions in a controlled environment.

(e.g.: lepton colliders in boosted topologies) [Hoang et al.]

 \hookrightarrow Relations between different masses, and intrinsic limitations: difficult problem but can be understood.

Single-top production

where:

1.4

t-channel

Wt

s-channel

s-channel: sensitive to u/d PDF ratio. **t-channel** and Wt: sensitive to b PDF (5FS).

Single-top production

Several **new distributions measurements** (sensitivity to 4FS vs 5FS, Wt- $t\bar{t}$). Testing **tWb** coupling and top-quark distribution in single-top phase space.

Further coupling information from **rare top-related processes**:

 $t\gamma q$ (evidence), tZq (observation) , FCNC $t\gamma$ (bounds).

 \longrightarrow see Suyong Choi's talk

 $t\bar{t} + H$, NLO QCD+EW corrections to off-shell production: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}H \longrightarrow$ see Matthieu Pellen's talk

Off-shell effects

 \rightarrow During run II, the tail of the distributions will be probed \rightarrow New physics contributions?

State-of-the-art predictions comparable with experiments

- \hookrightarrow NLO effects dominated by QCD corrections.
- \hookrightarrow EW non-negligible in specific regions: $\pm 15\%$.
- → Difference between NLO QCD+EW and NLO QCDxEW test perturbative stability (larger when EW corrections matter most).
- \hookrightarrow Off-shell effects can be large (see radiative tail in M_t distribution)

$t\bar{t}b\bar{b}$ as background to $t\bar{t}H(b\bar{b})$

A case for in depth study of Monte Carlo modelling (NLO QCD).

 \longrightarrow see Frank Siegert's talk

- Several tools on the market
 - Sherpa + OpenLoops [<u>1309.5912</u>]
 - PowHel + Pythia/Herwig [1709.06915]
 - PowhegBox + OpenLoops + Pythia/Herwig
 [1802.00426]
 - MG5_aMC + Pythia/Herwig
 - Herwig7 + OpenLoops
- History of out-of-the-box comparisons:
 - Large discrepancies
 - Partially due to large perturbative uncertainties
 - But also beyond!
 - » Parton Shower?
 - » NLO+PS matching algorithm?

Improve or accept as uncertainties (and kill ttHbb?)?

Dedicated study within the $t\bar{t}H$ WG (HXSWG) since YR4

- Application of reduced scale to tuned NLO+PS comparisons
 - improved agreement between NLO+PS tools for light-jet spectrum
 - still sizable O(40%) differences in N_{2b} region \rightarrow origin?

Important input: NLO QCD calculation of $t\bar{t}b\bar{b} + j$ (OpenLoops2+Sherpa) [Boccioni, Kallweit, Pozzorini, Zoller, 2019] Noticed large shower recoil effects on b jets. How to reduce uncertainty in hard jet configurations?

Fusing $X + b\overline{b}$ and X+jets in the Sherpa MC

[Katzy, Krause, Pollard, Siegert, in preparation]

- Fusing algorithm, keep leading two emission:
 - \hookrightarrow Heavy flavours: keep from $t\bar{t}b\bar{b}$ NLO+PS \rightarrow **direct** component.
 - \rightarrow Light flavours: keep from $t\bar{t}$ +jets MEPS@NLO \rightarrow fragmentation component.
- 2b-jet production dominated by <u>direct</u> component.
- <u>1b-jet</u> production receives contributions by both <u>direct and fragmentation</u> configurations.

 $t\bar{t}V \ (V = W, Z, \gamma)$, measuring top-quark EW couplings and important background to $t\bar{t}H$ (multileptons).

Fitting $t\bar{t}Z$ and $t\bar{t}W$ simultaneously:

Most recent results show some tension in $t\bar{t}W$: (from $t\bar{t}H$ analyses) \longrightarrow see Tamara Vasquez Schroeder's talk Theory: (YR4)×1.2 $\simeq 0.7^{+0.09}_{-0.08}$, to account for:

- \hookrightarrow subleading NLO EW corrections (tW rescattering) not included in YR4 results;
- → large contribution from $(q, \bar{q})g \rightarrow t\bar{t}W + (q, \bar{q})$, now included adding $t\bar{t}W + j$ at NLO (technically part of the NNLO QCD corrections to $t\bar{t}W$).

Experiments: $\mu \simeq 1.39$ w.r.t. SM $t\bar{t}W$ (1.2× YR4)

To be continued ...

Tops, tops, and more tops: $t\bar{t}t\bar{t}$ and $tt\bar{t}$

Very sensitive to BSM effects: 4-top production often enhanced in BSM models compared to $t\bar{t}$. \longrightarrow see Qing-Hong Cao's talk

[Frederix, Pagani, Zaro, arXiv:1711.02116]

- \hookrightarrow Large subleading contributions at LO and NLO, with accidental cancelations among them.
- \hookrightarrow BSM physics may spoil such cancelations. NLO effects cannot be neglected

Triple Top-Quark Production at the LHC

Top-quark and new physics

Searching for and interpreting evidence of new physics

→ Model-specific approach: more predictive, yet arbitrary.
 → Mini-workshop: Top Meets New Physics
 [talks by Riccardo Torre, Oleksii Matsedonskyi, Tao Liu, Lilin Yang, Minho Son,
 Christopher Verhaaren, Gabriel Lee]

\downarrow Naturalness as the leading guiding principle

 \hookrightarrow Effective Field Theory approach: less arbitrary, more systematic, but less prone to simple prescriptions.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d, \text{ with } \mathcal{L}_d = \sum_i C_i \mathcal{O}_i, \quad [\mathcal{O}_i] = d$$

expansion in Λ (scale of NP) \rightarrow sets validity of its application.

Retain the **constraining structure of a gauge theory** (**SM**), not true for generic anomalous couplings.

Very complementary approaches

Top-quark and new physics: FCNC and a simple model

 \rightarrow see Nuno Castro's talk

2HDM also probed by dedicated searches \Longrightarrow

Alignment scenario: consistent with SM-like Higgs and EWPO.

Top-quark and new physics via SMEFT

 $[\rightarrow \text{see Riccardo Torre's talk}]$

- \hookrightarrow Small number of operators affect top physics (in first approximation).
- \hookrightarrow They affect **top-quark** distributions, **Higgs** observables, and **EW precision** observables.

 \rightarrow see Ken Mimasu's talk]

Precision SMEFT in tt+V

[Bylund, Maltoni, Tsinikos, Vryonidou, Zhang; JHEP 1605 (2016) 052]

Differential distributions - P_T(Z)

- Dipole operators: interference term suppressed throughout, energy growth for quadratic term different helicity/polarisation structure from SM
- Current operator: constant behaviour with energy everywhere rescaling

K. Mimasu - 27/09/2019

Tops & vector bosons in SMEFT

Other important effects: Higgs p_T distribution

Not visible in the inclusive cross sections, but in the shape of distributions.

[Grazzini et al., arXiv:1612.00283]

Include $O_{\phi G}$ and $O_{u\phi}$ in NLO+NLL computation: simultaneous effects of two or more operators affects high-energy tail of the spectrum.

More: probing the gluon-Higgs vs top-Higgs interactions

[Maltoni et al., arXiv:1607.05330]

Combining:	
inclusive H	
ttH	
HH	
boosted H	
off-shell H	

[Azatov et al., arXiv:1608.00977]

No summary needed for a Summary Talk!

Thank you!!

to the organizers and all the participants