Top-quark pair production: fully differential predictions at NNLO

Javier Mazzitelli

TOP2019, IHEP, Beijing, September 23rd 2019

Outline

Introduction

NNLO corrections with q_T subtraction

Extension to heavy quark production

Results and comparison with data

Conclusions and outlook

Top-quark pair production

Main production mechanism of top quarks at hadron colliders

- Approx. 3 times larger than single-top production
- About 15 tt pairs produced per second at the LHC!

Impressive experimental precision

Very precise theoretical predictions are needed

Cross section known at NNLO QCD + NLO EW + resummation

Why a new NNLO QCD calculation?

• Very difficult calculation: only one group able to complete it until now

Bärnreuther, Czakon, Mitov (2012) Czakon, Mitov (2012) Czakon, Fiedler, Mitov (2013) Czakon, Fiedler, Heymes, Mitov (2015,2016)

- Independent check is always useful!
- No publicly available tool to produce NNLO distributions yet

tt production at NNLO

We need the scattering amplitudes:

... but we also need to handle their divergencies:

We need **subtraction methods** that allow us to perform these calculations numerically

q_T subtraction

Originally developed for the hadroproduction of colourless final states Catani, Grazzini (2007)

Implemented as slicing method, slicing parameter: \mathbf{q}_{T} (transverse momentum of final state F)

Master formula:

General form of hard-collinear function known at NNLO for colourless F

Method can be applied to the production of arbitrary colour singlets once the relevant amplitudes are available

The MATRIX project

The MATRIX project

Status:

- $Z/\gamma^* (\to \ell^+ \ell^-)$
- $W(\to \ell\nu)$
- *H*
- \bullet $\gamma\gamma$

First public release out in November 2017

Grazzini, Kallweit, Wiesemann

•
$$Z\gamma \to \ell^+\ell^-\gamma$$

- ullet $ZZ(o 4\ell)$ Plus NLO gg [not in public release]
- $WW(\to \ell\nu\ell'\nu')$
- $ZZ/WW \rightarrow \ell\ell\nu\nu$
- $\bullet \ WZ \to \ell\nu\ell\ell$
- \bullet HH [not in public release]

What about heavy quark production?

PLITUDES tdhpl...)

ion

ate X-sections

NNLL resumma

Munich Automat

Extension to heavy-quark production

Analogous formula, but with new contributions coming from final state radiation

$$d\sigma_{\mathrm{NNLO}}^{t\bar{t}} = \mathcal{H}_{\mathrm{NNLO}}^{t\bar{t}} \otimes d\sigma_{\mathrm{LO}}^{t\bar{t}} + \left[d\sigma_{\mathrm{NLO}}^{t\bar{t}+\mathrm{jet}} - d\sigma_{\mathrm{NNLO}}^{t\bar{t},\mathrm{CT}} \right]$$

- Modified subtraction counterterm fully known (ingredient: NNLO soft anomalous dimension Γ_t)
- The structure of the hard-collinear function H also changes:

Thanks to these results, q_T subtraction can now deal with $Q\overline{Q}$ production

Our calculation is implemented within the MATRIX framework

First inclusive and differential results recently published, presented in the following slides

MATRIX at work

<<MATRIX-MAKE>> This is the MATRIX process compilation.

======>>

```
======>> list
process id
                       process
                                                                 description
                                                                 on-shell Higgs production
pph21
                       H <-- מ מ
ppz01
                  >> pp --> Z
                                                            >>
                                                                 on-shell Z production
ppw01
                  >> pp --> W^-
                                                                 on-shell W- production with CKM
ppwx01
                       +^W <-- q q
                                                            >>
                                                                 on-shell W+ production with CKM
ppeex02
                  >> pp --> e^- e^+
                                                            >>
                                                                 Z production with decay
                  >> pp --> ve^- ve^+
                                                            >>
                                                                 Z production with decay
ppnenex02
                  >> pp --> e^- v e^+
                                                                 W- production with decay and CKM
ppenex02
                                                            >>
                       pp --> e^+ v e^-
                                                            >>
                                                                 W+ production with decay and CKM
ppexne02
ppaa02
                  >> p p --> gamma gamma
                                                            >>
                                                                 gamma gamma production
                  >>
                       p p --> gamma gamma
                                                            >>
                                                                 gamma gamma production
ppaa02
                  >> p p --> e^- e^+ gamma
                                                            >>
                                                                 Z gamma production with decay
ppeexa03
                       p p --> v e^- v e^+ gamma
                                                                 Z gamma production with decay
ppnenexa03
                  >> pp --> e^- v e^+ gamma
ppenexa03
                                                            >>
                                                                 W- gamma production with decay
                  >> p p --> e^+ v e^- gamma
ppexnea03
                                                            >>
                                                                 W+ gamma production with decay
                  >>
                       p p --> Z Z
                                                                 on-shell ZZ production
ppzz02
                  >> w^+ W^-
                                                            >>
                                                                 on-shell WW production
20wxwqq
                  >>
                       p p --> e^- mu^- e^+ mu^+
                                                            >>
                                                                 ZZ production with decay
ppemexmx04
ppemexmx04NLOgg
                       p p \longrightarrow e^- mu^- e^+ mu^+ NLOgg
                                                            >>
                                                                 ZZ production with decay (NLO gg)
                       p p --> e^- e^- e^+ e^+
                                                            >>
                                                                 ZZ production with decay
ppeeexex04
                       p p --> e^- e^+ v mu^- v mu^+
                                                                 ZZ production with decay
                                                            >>
ppeexnmnmx04
                  >> pp --> e^- mu^+ v mu^- v e^+
                                                            >>
                                                                 WW production with decay
ppemxnmnex04
                  >> pp --> e^- e^+ v e^- v e^+
ppeexnenex04
                                                            >>
                                                                 ZZ/WW production with decay
                  >> pp --> e^- mu^- e^+ v mu^+
ppemexnmx04
                                                            >>
                                                                 W-Z production with decay
                  >> pp --> e^- e^- e^+ v e^+
                                                                 W-Z production with decay
ppeeexnex04
                                                            >>
                  >> pp --> e^- e^+ mu^+ v mu^-
ppeexmxnm04
                                                           >>
                                                                 W+Z production with decay
ppeexexne04
                  >>
                       p p --> e^- e^+ e^+ v e^-
                                                           >>
                                                                 W+Z production with decay
                       p p --> top anti-top
ppttx20
                                                           >>
                                                                 on-shell top-pair production
|======>> ppttx20
<<MATRIX-MAKE>> MATRIX usage agreements:
<<MATRIX-MAKE>> MATRIX is based on several computations, studies and tools from
               various people and groups. When using results obtained by MATRIX
               these efforts must be acknowledged by citing the list of
               references in the CITATION.bib file, which is created in the
               result folder with every run.
<<MATRIX-READ>> Do you agree with these terms? Type "y" to agree, or "n" to
               abort the code.
<<MATRIX-MAKE>> You have agreed with all MATRIX usage terms.
<<MATRIX-MAKE>> Starting compilation...
<<MATRIX-MAKE>> Using compiled LHAPDF installation under
                (config/MATRIX configuration) path to lhapdf=/home/grazzini
               /lhapdf-local/bin/lhapdf-config
<<MATRIX-MAKE>> Download and Compilation of OpenLoops via svn checkout from
               http://openloops.hepforge.org/svn/OpenLoops/branches/public into
               /mnt/runs2/grazzini/develop/munich/MATRIX/external/OpenLoops-
               install...
<<MATRIX-MAKE>> Downloading OpenLoops...
<<MATRIX-MAKE>> Compiling OpenLoops...
```

```
Final result for:
                           p p --> top anti-top @ 100 TeV LHC
<MATRIX-RESULT> 3 separate runs were made
               #----\
               # LO-run
<MATRIX-RESULT> PDF: NNPDF31 lo as 0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO: 2.381e+07 fb +/- 2.2e+04 fb (muR, muF unc.: +21.1% -16.0%)
               #----\
               # NLO-run
               #____/
<MATRIX-RESULT> PDF: NNPDF31 nlo as 0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO: 2.049e+07 fb +/- 1.2e+04 fb (muR, muF unc.: +22.1% -16.6%)
<MATRIX-RESULT> NLO: 3.234e+07 fb +/- 2.7e+04 fb (muR, muF unc.: +11.3% -10.4%)
               #----\
               # NNLO-run
               #----/
<MATRIX-RESULT> PDF: NNPDF31 nnlo as 0118
<MATRIX-RESULT> Total rate (possibly within cuts):
<MATRIX-RESULT> LO: 2.019e+07 fb +/- le+03 fb (muR, muF unc.: +22.2% -16.6%)
<MATRIX-RESULT> NLO: 3.187e+07 fb +/- 2.8e+03 fb (muR, muF unc.: +11.3% -10.5%)
<MATRIX-RESULT> NNLO:3.527e+07 fb +/- 4.5e+04 fb (muR, muF unc.: +2.9% -4.8%)
                    (computed with finite qT-subtraction cut-off r cut=0.0015)
<MATRIX-RESULT>
<MATRIX-RESULT> NNLO:3.522e+07 fb +/- 7.4e+04 fb (muR, muF unc.: +2.8% -4.7%)
                 (extrapolated to r cut=0 -- final result with uncertainty)
<MATRIX-RESULT>
```

Per-mille level accuracy for total XS in ~1000CPU days, including differential distributions and scale uncertainties

Inclusive cross section

Excellent agreement with Top++

$\sigma_{ m NNLO} \ [m pb]$	Matrix	Top++
8 TeV	$238.5(2)_{-6.3\%}^{+3.9\%}$	$238.6^{+4.0\%}_{-6.3\%}$
13 TeV	$794.0(8)_{-5.7\%}^{+3.5\%}$	$794.0^{+3.5\%}_{-5.7\%}$
$100 \; \mathrm{TeV}$	$35215(74)^{+2.8\%}_{-4.7\%}$	$35216^{+2.9\%}_{-4.8\%}$

Statistical+systematic uncertainties

Scale uncertainties

NNPDF31 sets, m_t=173.3GeV

Scale uncertainties: $\mu_0=m_t$

 $\mu_0 < \mu_F, \mu_R < 2\mu_0$ 0.5 < $\mu_F/\mu_R < 2$

Per-mille accuracy in ~1000CPU days

Quality of the $q_T \rightarrow 0$ extrapolation can be understood looking at the r_{cut} dependence

Differential results

We compute single and double differential distributions

We compare our results with recent measurements from CMS in the lepton+jets channel [CMS-TOP-17-002]

CMS measurements are extrapolated to parton level in the inclusive phase space

we carry out our calculation without cuts

Perturbative results depend on the choice of scales μ_F , μ_R which should be chosen of the order of the characteristic hard scale

- Total cross section and rapidity distribution: m_t
- Invariant mass distribution: m_{ff}
- Transverse momentum distribution: m_T

The dynamical scale $\mu_0 = H_T/2 = (m_{Tt} + m_{T\bar{t}})/2$ is a good approximation to all these scales

Single-differential distributions

 Good perturbative behaviour, large overlap between NLO and NNLO bands

• As noted in previous analysis the measured $p_{\scriptscriptstyle T}$ is slightly softer than the NNLO prediciton

 Data and theory consistent within uncertainties

Single-differential distributions

- Higher order corrections have a larger effect on the shape
- Low $p_T(t_{high})$ region: FO instabilities associated with low $p_T(t\bar{t})$
- Good agreement with data

Single-differential distributions

- Lower scale $H_T/4$ (usually used as a benchmark) seems to lead to underestimation of perturbative uncertainties in certain $m_{t\bar{t}}$ regions
- Good description of data except for first bin ($m_{t\bar{t}}$ <360GeV) Resummation effects? Smaller m_t ? CMS-TOP-18-004: leptonic channel, fit m_t =170.81±0.68GeV

- As for single differential distribution, p_T data softer than NNLO
- This feature holds in all the rapidity intervals

- Kinematical boundary at LO: $m_{t\bar{t}} > 2 m_{T,min}$
- NLO (NNLO) is effectively LO (NLO) below that threshold → larger uncertainties
- NNLO nicely describes the data (except only close to the physical $m_{t\bar{t}}$ threshold)

- Again some discrepancy in the low $m_{t\bar{t}}$ region, smaller effect due to larger bin size
- Impact of radiative corrections relatively uniform in both variables

- Similar features compared to semileptonic channel (note these are normalized distributions)
- Using fitted top mass by CMS (170.81GeV) leads to a better agreement with data
- Same improvement observed in m_{tt} - $|y_t|$ distribution (see backup slides)

- Again significant improvement in the first invariant mass panel
- Smaller differences in the other invariant mass regions

- Mass value has smaller impact in transverse momentum distribution
- Data still softer than prediction, though slightly better agreement with lower mass

Summary and outlook

- We have presented a new computation of top-quark pair production at NNLO
- First complete application of q_T subtraction to colourful final states at NNLO
- Calculation fully implemented within the **MATRIX** framework
- We are able to evaluate arbitrary IR safe observables for stable top quarks
 - multi-differential distributions
 - cross sections with cuts in the top quarks and jets kinematics
- NNLO differential distributions in 1000-2000 CPU days
- Nice description of parton level CMS data

Outlook:

- inclusion of EW corrections
- inclusion of top-quark decays

Thanks!

Backup slides

 $p_T(t_{high})$

 $p_T(t_{low})$

 $p_T(t_{had})$

 m_{tt}

m_{tt} vs $p_T(t_{had})$

Comparison to existing results

Excellent agreement even in extreme kinematical regions

Comparison to existing results

Excellent agreement even in extreme kinematical regions