

Universidade do Minho

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

top-quark FCNC in production and decay processes

Nuno Castro, on behalf of the ATLAS and CMS collaborations nuno.castro@fisica.uminho.pt

Top 2019 - International Workshop on Top Quark Physics
Beijing, 23rd September 2019

Flavour Changing Neutral Currents (FCNC) in the top-quark sector

- FCNC in top-quark processes very rare in the SM
 - but significantly enhanced in BSM extensions

probing the tqH vertex

many possible signatures, depending on the Higgs decay

- dedicated analyses for each signature
 - o both single top production tH production via FCNC and pair production of top quarks with $t \rightarrow qH$ FCNC decay considered
- combined interpretation performed by ATLAS

- both single t (ST) and pair top production (TT) with an FCNC decay considered
 - different selections based on 1 lepton final states
 - 5 categories based on jet and b-jet multiplicities
 - event reconstruction based on a BDT
 - new BDT to discriminate signal from background

main systematics: b-tagging uncertainties

JHEP 05 (2019) 123 13 TeV, 36.1 fb⁻¹

- 1 lepton channel with several jets and b-tagged jets mult. regions
- event selection using a likelihood ratio based on event kinematics

JHEP 05 (2019) 123 13 TeV, 36.1 fb⁻¹

• main systematics: c-mistagging and t \overline{t} + jets modelling

$$\mathcal{B}(t \to Hu) < 5.2 (4.9) \times 10^{-3}$$

 $\mathcal{B}(t \to Hc) < 4.2 (4.0) \times 10^{-3}$

probing the tqH vertex $(H \rightarrow \tau \tau)$

JHEP 05 (2019) 123 13 TeV, 36.1 fb⁻¹

- 1 lepton and/or hadronic taus events
 - classify events based on N_{taus}
- main background from fake taus: data-driven estimate
- event reconstruction via a kinematic fit
- BDT used for signal vs bkg. discrimination
- main systematics: fake tau modelling

PRD 98 (2018) 032002 13 TeV, 36.1 fb⁻¹

- multilepton channel: 2 same-sign lep / 3 lep: very pure final state
- main backgrounds: t t W and non-prompt leptons
- event reconstruction: 2 combined BDTs (sig. vs non-prompt lep or t t W)
- main systematics: bkg modelling (stat for DD bkg)

probing the tqH vertex $(H \rightarrow \gamma \gamma)$

JHEP 10 (2017) 129 13 TeV, 36.1 fb⁻¹

- di-photon topology: both 1 lep and hadronic W decays considered
- main backgrounds: γγ j
- main systematics: JES, bkg modelling

JHEP 05 (2019) 123 13 TeV, 36.1 fb⁻¹

ATLAS combination

$$\mathcal{B}(t \to Hu) < 1.2 \ (0.83) \times 10^{-3}$$

 $\mathcal{B}(t \to Hc) < 1.1 \ (0.83) \times 10^{-3}$

probing the tay vertex

arXiv:1908.08461 13 TeV, 81 fb⁻¹ γt μ

- both production and decay considered
 - production mode targeted (1 jet)
- photon + lep final state
- dominant bkg: e→γ fakes and prompt photons

probing the tay vertex

arXiv:1908.08461 13 TeV, 81 fb⁻¹

- both production and decay considered
 - production mode targeted (1 jet)
- photon + lep final state
- dominant bkg: e→γ fakes and prompt photons
- NN used for signal vs bkg discrimination

probing the tqy vertex

arXiv:1908.08461 13 TeV, 81 fb⁻¹

Nuisance parameter pull

Jet energy resolution: data vs. MC Jet energy resolution: effective NP 2 $W+\gamma+jets: p_{\tau}^{\gamma}$ reweighting Jet energy resolution: effective NP 3 background estimation $i \rightarrow \gamma$ b-tagging: mis-tag (light) NP 1 normalisation: W+y+jets, heavy flavour E_{τ}^{miss} : soft-term resolution (perpendicular) Jet energy resolution: effective NP 1 Z+jets: scale uncertainties tī: matrix element tī: initial state radiation Z+jets: heavy flavour fraction Jet energy resolution: effective NP 4 E_{τ}^{miss} : soft-term resolution (parallel) tī: final state radiation Single top: final state radiation background estimation $e \rightarrow \gamma$ Jet energy scale: η intercalibration non-closure high-E Jet energy resolution: effective NP 6

- dominant systematics:
 - JER and bkg modelling

$\mathcal{B}(t \to q\gamma)[10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	$tu\gamma$	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma)[10^{-5}]$	$tc\gamma$	LH	22	27^{+11}_{-7}
$\mathcal{B}(t \to q\gamma)[10^{-5}]$	$tc\gamma$	RH	18	28^{+12}_{-8}

probing the tqg vertex

b t W j

- t → gq decay is hard to search for, so top production via FCNC is the best option
- NNs used to reduce multijet background and discriminate signal
- dominant systematics: PDF and signal modelling

$$\mathcal{B}(t \to gu) < 2.0 (2.8) \times 10^{-5}$$

 $\mathcal{B}(t \to gc) < 4.1 (2.8) \times 10^{-4}$

probing the tqg vertex

EPJC 76 (2016) 55 8 TeV, 20.3 fb⁻¹

- search for direct top production via FCNC
- NN used to discriminate signal from bkg
- dominant systematics: b-tag, E_T^{miss}, bkg modelling

$$\mathcal{B}(t \to gu) < 4.0 \times 10^{-5}$$

$$\mathcal{B}(t \to gc) < 2.0 \times 10^{-4}$$

probing the tqZ vertex

PAS-TOP-17-017 13 TeV, 35.9 fb⁻¹

- exploring both production and decay channels (3 lepton final state)
 - =1 b-tag for FCNC production
 - 2 or 3 jets (including ≥ 1 b-tag) for decay
- event reconstruction with a BDT
- main backgrounds: t T Z and non-prompt lep
- main systematics: non-prompt lep modelling

probing the tqZ vertex

JHEP 07 (2018) 176 13 TeV, 36.1 fb⁻¹

- considering top decay via FCNC
 - =1 b-tag
- event reconstruction via a χ^2 minimization

$$\chi^2 = rac{\left(m_{j_a\ell_a\ell_b}^{
m reco} - m_{t_{
m FCNC}}
ight)^2}{\sigma_{t_{
m FCNC}}^2} + rac{\left(m_{j_b\ell_c
u}^{
m reco} - m_{t_{
m SM}}
ight)^2}{\sigma_{t_{
m SM}}^2} + rac{\left(m_{\ell_c
u}^{
m reco} - m_W
ight)^2}{\sigma_W^2},$$

- main backgrounds: t T Z and WZ
- main systematics: background modelling

$$\mathcal{B}(t \to Zu) < 1.7 \ (2.4) \times 10^{-4}$$

 $\mathcal{B}(t \to Zc) < 2.4 \ (3.2) \times 10^{-4}$

top FCNCs summary plot

summary

- FCNCs in the top sector are:
 - a consistency test of the SM
 - a window to new physics
- Both ATLAS and CMS have a comprehensive search programme for top FCNCs
- Approaching the required sensitivity to probe some BSMs

Thanks for your attention

Questions?

you can always reach me at nuno.castro@fisica.uminho.pt

JHEP 05 (2019) 123 13 TeV, 36.1 fb⁻¹

Post-fit plots (LH discriminant)

