

Modelling and uncertainties for ttbb production as background to ttH(bb)

Frank Siegert

TOP 2019, Beijing, September 2019

Why do we care so much about ttbb?

- ATLAS and CMS ttH(bb) analyses rely on MC modelling for irreducible ttbb background
 - included as template in profile likelihood fit
- Largest sources of uncertainty on extracted signal strength related to tt+HF MC modelling!
- What can we improve?
 - ATLAS & CMS: relied on NLO+PS ttbar so far!
 More accurate theory with NLO ttbb used only to reweight HF fractions (ATLAS) or cross-checks (CMS)
 - Theory: Large perturbative ttbb uncertainties even enlarged by NLO+PS algorithms
 - **Both**: More rigorous combination of inclusive tt+jets and ttbb predictions.

Event generation for tt + heavy flavour

Traditional approaches for tt+HF MC predictions:

- "Inclusive" NLO+PS tt sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged tt+jets sample with HF from higher-order MEs (hard b's)

 or parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS ttbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

"5-flavour" schemes

"4-flavour" schemes

Event generation for tt + heavy flavour

Traditional approaches for tt+HF MC predictions:

- "Inclusive" NLO+PS tt sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged tt+jets sample with HF from higher-order MEs (hard b's) cor parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS ttbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

"4-flavour" schemes

 \rightarrow 2→4 NLO QCD matrix elements with massive b-quarks

Final state $g \rightarrow bb$ **dominant**

- massive b's \rightarrow no (jet) cuts!
- Collinear g→bb produced in ME

No initial state b in MEs

- 4FS PDFs
- ► IS g→bb in ME

 $2\rightarrow4$ NLO QCD matrix elements with massive b-quarks

 \rightarrow 2→4 NLO QCD matrix elements with massive b-quarks

Final state $g \rightarrow bb$ **dominant**

- massive b's \rightarrow no (jet) cuts!
- Collinear g→bb produced in ME
- Matched to parton shower for additional emissions
 - "double-splitting" contribution becomes relevant!

No initial state b in MEs

- 4FS PDFs
- IS g→bb in ME

2→4 NLO QCD matrix elements with massive b-quarks

MC programs for 4FS ttbb at NLO+PS

- Several tools on the market
 - Sherpa + OpenLoops [<u>1309.5912</u>]
 - PowHel + Pythia/Herwig [<u>1709.06915</u>]
 - PowhegBox + OpenLoops + Pythia/Herwig [1802.00426]
 - MG5_aMC + Pythia/Herwig
 - Herwig7 + OpenLoops
- History of out-of-the-box comparisons:
 - Large discrepancies
 - Partially due to large perturbative uncertainties
 - But also beyond!
 - » Parton Shower?
 - » NLO+PS matching algorithm?

Improve or accept as uncertainties (and kill ttHbb?)?

MC programs for 4FS ttbb at NLO+PS

Several tools on the market

• Sherpa + OpenLoops [<u>1309.5912</u>]

Arguably one of the most complex processes for NLO+PS matching

→ Strong challenge to understand unc's as prototype for other processes!

» NL matching algorithm?

Improve or accept as uncertainties (and kill ttHbb?)?

Diagnosis: Tuned comparisons

 $d\sigma/dp_T$ [pb/GeV]

p_T of 1st light-jet (ttbb cuts)

- Tuned comparison effort to compare matching and parton shower between various tools
 - → Isolate algorithmic unc's in:
 - NLO+PS matching
 - Parton shower (e.g. recoil scheme effects)
- New input from PowhegBox implementation and ttbbj NLO calculation helps pin down discrepancies
- Common Rivet routine for tt+1b and tt+2b final states in context of ttH subgroup in HXSWG

---- SHERPA YR4

--- MG5 NEW

SHERPA NEW

Therapy: Tuned matching [Preliminary]

Differences <u>suspected as</u> combination of 2 effects in MC@NLO matching:

$$d\sigma^{(\text{NLO+PS})} = d\Phi_{B} \overline{\mathcal{B}} \underbrace{\Delta(t_{0}, \mu_{Q}^{2})}_{\text{unresolved}} + \underbrace{\int_{t_{0}}^{\mu_{Q}^{2}} dt \underbrace{\mathcal{R}_{PS}}_{\mathcal{B}} \Delta(t, \mu_{Q}^{2})}_{\text{resolved, singular} \equiv \mathbb{S}} + d\Phi_{R} \underbrace{\left[\mathcal{R} - \mathcal{R}_{PS}\right]}_{\text{resolved, non-singular} \equiv \mathbb{H}}$$

- large K-factor~1.9
- spuriously large R_{PS} in MC@NLO matching with MadGraph5_aMC@NLO + Pythia/Herwig

Fixed-order studies of **ttbbj@NLO** with OpenLoops2+Sherpa
[Buccioni, Kallweit, Pozzorini, Zoller 2019]

Reduced $\mu_{\rm p}$ stabilises K-factor

No significant shape distortions

New benchmark for NLO+PS progs!

Therapy: Tuned matching [Preliminary]

- Application of reduced scale to tuned NLO+PS comparisons
 - improved agreement between NLO+PS tools for light-jet spectrum

Therapy: Tuned matching [Preliminary]

- Application of reduced scale to tuned NLO+PS comparisons
 - improved agreement between NLO+PS tools for light-jet spectrum
 - still sizable O(40%) differences in N_{2b} region \rightarrow origin?

Recoil observables [Preliminary]

- Large shower recoil effect on b-jets
 - strong recoil to b-jet in Pythia8 already in 1st emission
 - \rightarrow ruled out by ttbbj NLO
 - survives in MC@NLO matching procedures

- Have to accept these differences as matching uncertainties?
 - Not surprising, since $\langle p_T^{\text{jet}} \rangle \sim 10 \text{ x } \langle p_T^{\text{bjet2}} \rangle !$

How to reduce uncertainties in hard jet configurations?

Recap: Event generation for tt + heavy flavour

Traditional approaches for tt+HF MC predictions:

- "Inclusive" NLO+PS tt sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}
- Multi-leg merged tt+jets sample with HF from higher-order MEs (hard b's)
 or parton shower g→bb (soft/collinear b's)
 - e.g. MG5_aMC+Pythia, Sherpa+OpenLoops
- NLO+PS ttbb using matrix elements with massive b-quarks
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

"5-flavour" schemes

"4-flavour" schemes

Recap: Event generation for tt + heavy flavour

Traditional approaches for tt+HF MC predictions:

- "Inclusive" NLO+PS tt sample with
 HF production from parton shower g→bb
 - e.g. {Powheg,aMC@NLO}+{Pythia,Herwig}

Cerel

"5-flavour" schemes

Multi-leg merged tt+jets sample with HF from higher-order MEs (hard b's)

- or parton shower g-bb (soft/collinear b's)

 Can we combine 4-flavour
- NLO+PS and 5-flavour multileg?
 - e.g. Powheg+OpenLoops+Pythia8, Sherpa+OpenLoops

"4-flavour" schemes

Fusing X+bb and X+jets in the Sherpa MC

aka "Multi-jet merging in a variable flavour number scheme"

[1904.09382]

Three main ingredients:

- 1. Interpreting ttbb as merged contribution
- 2. Overlap removal
- 3. Matching 4F/5F in PDFs and α_s

Can be applied for LO and NLO merging!

Step 1: Embedding ttbb as merged contribution

- ttj(j(...)) matrix elements treated in regular **tt+jets MEPS@NLO**:
 - clustering to get topology
 of ME emissions ("shower history")
 - core scale based on $2\rightarrow 2$ process
 - application of $\alpha_S(\mu_R^2) \rightarrow \alpha_S(p_T^2)$ reweighting for each emission
 - application of Sudakov factors $\Delta(t_1, t_2)$ along internal lines (event vetoes) for correct resummation properties
- Now: Same applied to **ttbb NLO+PS** massive calc'n
 - remains separate standalone ttbb NLO+PS sample, but generated consistent with multi-leg merged approach

Step 2: Heavy Flavour Overlap Removal

- HFOR used before in experiments in simplified form
 - $dR(b,b)>0.4 \rightarrow \text{keep from ttbb ME}$
 - $dR(b,b)<0.4 \rightarrow \text{keep from tt ME} + \text{bb from PS}$
- Here: from multi-leg merging prescription
 - Cluster full event at PS level using "reverse shower"
 - Look at **leading two emissions**
 - » Heavy Flavour → keep from ttbb NLO+PS simulation ("direct component")
 - » Light Flavour → keep from tt+jets MEPS@NLO ("fragmentation component")
 - ⇒ Sub(sub)leading g→bb splittings not from ttbb ME, but from ttjjjj ME or from PS.
- (Extra: caution with b's from "FSR" in top decay products!)

Step 3: Matching 4F/5F in PDFs and α_{ς}

- For consistent combination with tt+jets we produce the massive ttbb NLO+PS
 with a 5F PDF
 - \rightarrow m_b mismatch with massive NLO matrix elements
 - Looking at ideas from **FONLL** [Forte, Napoletano, Ubiali 2016] based on $\sigma^{\rm FONLL} = \sigma^{(5)} \sigma^{(4),(0)} + \sigma^{(4)}$

we find that they are generated by prescription above!

- NLO accuracy preserved from input matrix elements
- LL/NLL accuracy according to shower used
 - » Overlap removal and embedding of ttbb as merged contribution with LL shower automatically generates leading log matching term
 - » Next-to-leading log would need explicit counterterms as event weights (complicated) or comes automatically with NLL showers in the future
- Additional event weights for mismatch between α_S evolution with $m_b = 0$ and virtuals with $m_b \neq 0$

$$w_{q\bar{q}}^{\text{new}} = w_{q\bar{q}} \left(1 - \frac{4}{3} T_R \ln \frac{\mu_R^2}{Q^2} \frac{w^{\text{Born}}}{w^{\text{ME}}} \right)$$

$$w_{gg}^{\text{new}} = w_{gg} \left(1 - \frac{4}{3} T_R \ln \frac{\mu_R^2}{m_b^2} \frac{w^{\text{Born}}}{w^{\text{ME}}} \right)$$

Validation for Z+HF production

Implementation in Sherpa 2.2

 First application to Z+HF, compared to CMS 8 TeV data

- - Also applied as fusion of MEPS@NLO tt + 0,1j@NLO + 2,3j@LO and massive ttbb@NLO
 - 2-bjet production dominated by direct component, but 1-bjet observables with equal contributions from direct and fragmentation configurations!

<u>Englisch</u>	Deutsch ▲
-	ADJ <u>schwer</u> schwerer am schwersten ⊕ SYNO diffizil heikel ⊕
heavy {adj}	schwer [auch fig.]
difficult {adj}	schwer [hart, anstrengend, schwierig]

- tt + heavy flavour predictions as background to ttH(\rightarrow bb) are challenging
 - NLO+PS matching non-trivial and revealing spurious effects
- ttbbj NLO calculation valuable benchmark for NLO+PS ttbb simulations
- Large remaining uncertainties in N_{2 b-iet}, possibly due to recoil from hard jets?
- New fusing algorithm allows rigorous combination of tt+jets and ttbb MC simulations
 - More reliable simulation of configurations with large scale hierarchies (hard jets, soft b-jets)

Thank you for your attention!