

Measurements with the CLICTD chip

<u>I. Kremastiotis</u> ^{a,b}, R. Ballabriga ^a, N. Egidos ^{a,c}

^a CERN, ^b Karlsruhe Institute of Technology (KIT),^c University of Barcelona

CLIC Detector and Physics Collaboration Meeting CERN, 27-28 August 2019

Overview

- Introduction
- The process
- The CLICTD chip
- I-V characteristics
- Measurement results
- Summary and outlook

Introduction

- The CLIC Tracker Detector (CLICTD) chip:
 - A monolithic pixelated detector chip designed in the framework of the CLIC silicon tracker study
- Requirements for a monolithic chip for the CLIC silicon tracker:
 - Single point resolution in one dimension ≤7 μm (transverse plane)
 - Energy measurement with 5-bit resolution (ToT)
 - Time measurement with 10 ns bins and 8-bit resolution (ToA)
 - No multi-hit capability
 - Material budget 1-1.5% X_0 (incl. supports, cables, cooling) (i.e. ~200 μ m for silicon detector and readout)
 - Power consumption < 150 mW/cm²
 (Power pulsing, duty cycle 156 ns / 20 ms)

The process

- The CLICTD chip was designed in a 180 nm CMOS imaging process
 - The signal is collected with a small N-well on the P-type high resistivity epitaxial layer (small detector capacitance → minimise analog power consumption)
 - Deep P-well shielding the on-channel electronics from the collection electrode
 - The epitaxial layer is fully depleted by including an additional deep N-type implant
 - Using a process split, additional wafers are produced with a segmented deep N-type implant

• 1st process split: continuous N-layer

- 2nd process split: gap in N-layer (only in the long dimension)
 - To increase the lateral field and thereby to reduce the charge collection time

The CLICTD chip

- The CLICTD pixel:
 - Pixel area: $300 \times 30 \ \mu m^2$
 - In each pixel, the analog part is segmented in 8 front-ends:
 - To ensure prompt charge collection in the diodes
 - Each front-end includes a collection diode, amplifier, discriminator and a 3-bit tuning DAC
 - The discriminator outputs are combined in the digital logic by means of an OR gate:
 - Binary hit information for each individual front-end (hit map)
 - Different measurement options:
 - 8-bit ToA (10 ns bins), 5-bit ToT (programmable ToT range: 600 ns – 4.8 μs)
 - 13-bit long ToA counter
 - 13-bit photon counting
 - Readout data: zero compression algorithm:
 - 22 bits read out for channels that have been hit (hit-flag + 8 bits ToA + 5 bits ToT + 8 bits hit map)
 - 1 bit read out for channels that are not hit
 - Front-ends can be masked or test pulsed individually

The CLICTD chip

- The CLICTD chip:
 - Chip area: $5 \times 5 \text{ mm}^2$
 - Sensitive area (pixel matrix): $4.8 \times 3.84 \text{ mm}^2$
 - Number of pixels: 16×128
 - Verified using UVM (Universal Verification Methodology)
- The CLICTD periphery and interface:
 - Analog periphery:
 - 20 DACs for biasing the analog part
 - Internal bandgap reference
 - Digital periphery:
 - I²C interface for the slow control
 - Reading / writing internal registers
 - Matrix configuration
 - Serial readout at 40 MHz
 - Readout time $\sim 70 \,\mu s$ (CLICTD matrix size, using compression, 1% occupancy)

CLICTD verification (I)

- Implemented using **UVM** (Universal Verification Methodology):
 - Randomized stimuli to maximize the number of operation scenarios simulated
- Simulated scenarios include the chip main operations:

CLICTD verification (II)

The framework has been run on the intermediate and final versions of the RTL and postlayout netlist, unveiling some bugs that were successfully fixed

UVM framework to verify the CLICTD

- (1) Send commands via the slow control
- (2) Send commands by activating pins
- (3) Read slow control registers
- (4) Read pin values
- (5) Read serial readout pin values
- (6) Report whether the chip response matches the expected values

Device Under Test: in the last iteration, CLICTD post-layout top level netlist

Measurement setup

- CLICTD chips received: July 2019
- First samples wire-bonded on PCB received shortly after
 - 2 samples from "Rev. A" continuous N-implant
 - 1 sample from "Rev. B" gap in N-implant
- Communication established using CaRIBOu DAQ
 - Based on a ZC-706 evaluation kit
 - ARM microprocessor + Kintex-7 FPGA
 - DAQ system provides:
 - Power supplies
 - Clocks
 - Communication interfaces
 - Analog I/O
 - Differential and single-ended digital signals

Photo: M. Vicente

I-V characteristics

- Sensor I-V measured by scanning the substrate bias, for different values of the deep P-well bias
- Leakage current was measured at both nodes: SUB and PWELL (using two external power supplies)
- 1st process split: continuous N-layer

I-V characteristics

- 2nd process split: gap in N-layer
- Reduced isolation due to the gap in the N-layer

DAC scans

- Current and voltage DACs were scanned, confirming that they operate as expected
 - Example current DAC (left): preamplifier bias current
 - Example voltage DAC (right): threshold voltage
 - Threshold voltage scanned for different values of the register for tuning the DAC range

Threshold scan

- Unequalised matrix
- Local threshold tuning DACs set to mid-range
- Front-end not tuned

Preliminary results

Work in progress

Sample from 1st process split

Measurement with Sr90 source

- Unequalised matrix, counting mode
- Global threshold set to ~240 e⁻. Local threshold tuning DACs set to mid-range
- Front-end not tuned
- 10000 frames 40 ms long shutter

CLICTD source measurement hitmap

Sample from 1st process split

Plot: K. Dort

Power consumption

- Analog power consumption: 40 mW (22 mA @ 1.8 V VDDA) for the full chip
 - After applying power pulsing: power reduced to 9 mW (5 mA)
 - Close to the ~8 mW expected for the analog periphery
 - Power consumption of the analog front-end is configurable by periphery DACs
 - Currently at 170 mW/cm²
 - Can be further studied and optimised following detailed characterisation of the front-end
- Digital power consumption: 80 mW (45 mA @ 1.8 V VDDD) for the full chip
 - 45 mW estimated for clock distribution (corresponding to 240 mW/cm²)
 - 20 mW LVDS drivers (3 drivers in chip)
 - 5 mW LVDS receivers (Simulated value, 2 receivers in chip)
 - 10 mW estimated for digital periphery

Power pulsing:

- Analog power consumption during standby: ~2 mW/cm²
- Digital domain: the clock stops being distributed in the matrix. Simulated static leakage power: ~0.6 mW/cm²
- Estimated total power consumption during standby (analog + digital): ~3 mW/cm² + 43 mW periphery
- Estimated average power consumption over the CLIC cycle: ~4 mW/cm² + 43 mW periphery
 (50 Hz cycle, assuming 30 μs power-on time, in order to allow the front-end to be ready for detecting particles)

Preliminary results
Work in Progress

Summary and outlook

• The CLICTD chip:

- Simultaneous 8-bit ToA and 5-bit ToT measurement
- Cell dimensions: $300 \times 30 \ \mu m^2$
- Sensitive area: $4.8 \times 3.84 \text{ mm}^2$ (16 columns, 128 rows)
- Chip dimensions: $5 \times 5 \text{ mm}^2$
- Two versions produced:
 - Version 1: continuous N-layer
 - Version 2: gap in N-layer

• First results with the chip obtained:

- Sensor I-V characteristics indicate that the sensor can be operated at its nominal bias
- CLICTD chip periphery (slow control, DACs) performs as expected
- First results from the matrix readout obtained

Next steps:

- Matrix equalisation
- Study of the front-end performance
- Timing and charge sharing studies in order to compare the two process options
- First beam test with the CLICTD chip planned for late September 2019 at DESY