

Digital Calorimetry for Future Colliders

Robert Bosley, Phil Allport, Ioannis Kopsalis, Tony Price, Nigel Watson, Alasdair Winter.

- Simulations (FCC-hh/CLIC)
- Reconfigurable Sensor Studies
 - Multiple applications
- Future Outlook

FCC-hh Geometry Implementation

- Flexible geometry implemented in FCCSW
- Simulated 4 different geometries:
 - 30 Layers, 3.5mm W $(30 \times 1.0 X_0)$ 5.6mm Pb
 - 50 Layers, 2.1mm W ($50 \times 0.6 X_0$) 3.4mm Pb

Absorber (W or Pb), varying thickness

Substrate (Si), 450µm

Epitaxial (Si), 18μm

FCC-hh Geometry Optimisation

Analogue

- Analogue performance dominated by sampling fraction
- Almost no difference in performance between choices of material

FCC-hh Geometry Optimisation

DECAL

- Performance at low energies dominated by sampling fraction, similar to analogue case – clustering of similar number of layers
- Performance at high energies dominated by saturation – clustering of similar passive material
- Lead improves saturation as larger Moliere Radius causes greater spread of the shower

FCC-hh Geometry Optimisation Analogue

- Above this level, saturation significantly impacts performance of DECAL

CLIC Geometry Implementation

- From CLICdet (CLIC_o3_v14), modified ECAL segmentation, 18μm epi, 50×50μm pixels
- Committed soon
- Pandora PFA already includes DECAL options

Pixel Aspect Ratio Optimisation

Good Situation

Bad Situation

https://etheses.bham.ac.uk/id/eprint/8458/

Nominal 50GeV Energy: 30μm pitch, 12μm epi:

$$\frac{\sigma_E}{E} = \frac{16.1\%}{\sqrt{E}} \oplus \frac{0.5\%}{E} \oplus 0.4\%$$

- Trade off boundary crossing vs multiple occupancy
- Study performed using Mokka v08-05

- Model per-pixel effects (DigiMAPS custom package)
 - Charge collection efficiency / charge spread
 - Electronic noise
 - Dead area
 - Non-uniformity of threshold
 - Clustering algorithm at pixel level

Pixel Aspect Ratio Optimisation

• Illustrated using: 20 GeV γ in full Mokka simulation

50μm pitch, 18μm epi

- Each contribution to σ_E/E added in sequence
- Raw no noise, 100% charge collected
- Charge Spread diffusion of e-h pairs to diodes
- Signal Noise add thermal/electronic noise to pixels with hits
- All Noise adding noise as above but to all pixels
- Dead space area of chip for logic, memory, ...
- Clustered simple, mitigate effects of charge spread / boundary crossing

Reconfigurable CMOS Sensor

- Use in either tracker or calorimetry e.g. reduced cost, homogenous behaviour
- Very fine granularity required for DECAL
- Radiation hard
- Readout rate sufficiently high –ILC/CLIC/FCC-hh bunch crossing timing

Summing Logic

Reconfigurable Depleted CMOS MAPS Sensor

- Prototype built in TowerJazz 180nm
- Configurable as strip sensor (tracking)
 pad sensor (calorimetry)
- 64×64 pixels, 55μm pitch, 18μm thick
 Strip mode, record up to 3 hits/strip
 Pad mode, 15 hits/strip, 240 hits/pad

40MHz readout, compatible with ATLAS ITSDAQ

Reconfigurable Depleted CMOS MAPS Sensor

- Prototype built in TowerJazz 180nm
- Configurable as strip sensor (tracking)
 pad sensor (calorimetry)
- 64×64 pixels, 55μm pitch, 18μm thick
 Strip mode, record up to 3 hits/strip
 Pad mode, 15 hits/strip, 240 hits/pad

40MHz readout, compatible with ATLAS ITSDAQ

Threshold Scans (Preliminary)

- Used defocused IR laser, 1064nm, 100kHz
- Noise band around the shaper (1.15V)
- Clear signal gaussian around strip 22

- 25ns response time
- Shaper only registers negative gradients

Threshold Scans (Preliminary)

- Compare mean no. hits measured vs. threshold
- Less saturation in pad mode, more position information in strip mode

Threshold Scans (Preliminary)

- Compare mean no. hits measured vs. threshold
- Less saturation in pad mode, more position information in strip mode

- 1mm thick Al plate, holes from $400\mu m$ to $1100\mu m$
- Use this as effective control of illuminated area

- 1mm thick Al plate, holes from $400\mu m$ to $1100\mu m$
- Use this as effective control of illuminated area

- Calibration proof of principle can reconstruct illuminated area from number of hits
- Small aperture noise dominates

- Calibration proof of principle can reconstruct illuminated area from number of hits
- Large aperture signal hits visible

Future Outlook

- Make DECAL geometry available in CLICdet for wider use
- Move from DigiMAPS to Allpix² to simulate charge spread etc. in pixel configuration simulations
- Investigate impact of number of bits for strips, summing logic
- More detailed sensor characterisations

- Design improvement on current CMOS sensor
- Implement in more rad hard process
- Conceptual design of wafer scale array

Backup

Calice/Utrecht 11/04/2019 Robert Bosley, Birmingham

Aperture Test

- 3mm gap between aperture and sensor
- Laser $\lambda = 1064$ nm, $E_{\nu}^{-1}.2$ eV, f = 100kHz
- Phonon-assisted e-hole production

FCC Results (50 X $0.6X_0$, W)

UNIVERSITY OF Multiple Occupancy

- Two particles, only count 1 in each pixel.
- Effective undercount of hits

Resolution vs pixel pitch

Resolution vs Epi thickness

Pixel Configuration Studies (Preliminary)

Digital Pixel

UNIVERSITY OF PICTURES of DECAL aperture test

Boundary Crossing Effect

DESY TB March 2010: Shower Multiplicity in TPAC Stack

CERN TB September 2010: Shower Multiplicity in EUTelescope

DECAL concept holds to higher energies

