New CLIC physics studies for the

European Strategy comparisons

Ulrike Schnoor

J.-J. Blaising, R. Franceschini, P. Roloff, R. Ström, A. Wulzer

CLICdp workshop, 28 Aug 2019

Introduction

- Several studies prepared before the Open Symposium in Granada and for the Briefing Book
- Based on previous results via recasting, Delphes studies or full simulation studies

Study	Level
Relaxions	Recast based on hidden valley studies
SUSY benchmarks	Fast simulation study incl. backgrounds
Stop pairs	Extend existing full sim study
Electroweak Z couplings	Generator level/extrapolations
Dark Matter	Recast mono-photon cross-section limits
Stau Pairs	Delphes fast simulation incl. background
Dark photons	Fast simulation study incl. backgrounds

- Results appeared in comparison plots prepared by the BSM group presented in Granada and will appear in the Briefing Book
- See also talks by P. Roloff about BSM at future colliders and electroweak Z couplings measurements

Dark Matter

Dark Matter limits at CLIC in a simplified model

Simplified Dark Matter model introduces dark matter candidate χ_d and mediator particle:

- spin-1: vector or axial-vector
- spin-0: scalar

Whizard model file prepared by Andrea Wulzer according to http://feynrules.irmp.ucl.ac.be/wiki/DMsimp

Couplings in the model:

- dark matter coupling to mediator
- couplings of mediator to leptons and quarks
- ▶ Process: $\mathbf{e}^+\mathbf{e}^- \rightarrow \chi_d \chi_d \gamma$
 - Cross section depends on mass of mediator and dark matter particle
 - ► ⇒ mono-photon signature

Existing study for monophoton sensitivity at 380 GeV

Study by J.-J. Blaising [CLIC Physics potential YR 1812.02093, ch. 5.1]

- Full simulation including beamspectrum and ISR
- Relevant backgrounds: $e^+e^- \rightarrow \nu \bar{\nu} \gamma$ and $e^+e^- \rightarrow e^+e^- \gamma$
- Based on 1 ab⁻¹ at 380 GeV
- Cuts on the final state photons: $E > 10 \text{ GeV}, \ 10^{\circ} < \theta < 170^{\circ}$
- Systematic uncertainty: Bhabha scattering normalisation
 - dominated by forward electron tagging efficiency
 - here considered for the total background
- Exclusion limits based on the cases with uncertainty of 0.3% and without systematics

Higher energy: 3 TeV

- Use generator-level cross sections to extrapolate to 3 TeV (J.-J. Blaising)
- ► radiative Bhabha background $e^+e^- \rightarrow e^+e^-\gamma$ decreases by a factor of 10 between 380 GeV and 3 TeV
- \rightarrow better reach is expected at 3 TeV
- Exclusion limits based on the cases without and with larger systematics

J.-J. Blaising

Exclusions in the plane of mediator vs. DM mass

Obtain different cross sections for

$$e^+e^- \rightarrow \chi_d \chi_d \gamma$$

for different masses of the mediator and the dark matter candidate

- Recast the limits on cross sections obtained in the existing monophoton analyses at 380 GeV and 3 TeV to this model
- Cross sections determined with Whizard 2.7 including ISR and CLIC beam spectrum
 - $\blacktriangleright\,$ Using the same cuts, i.e. on the final state photons: $E>10\,{\rm GeV},\,10^\circ<\theta<170^\circ$
 - No beam polarisation
- \blacktriangleright Width of the mediator always fixed to the default value of WY1 = 10 GeV
- Various cases of couplings considered:

 $\label{eq:lepton} \begin{array}{l} \mbox{Lepton to mediator } g_{\mbox{lep}} = 0.1, 0.25, 1 \\ \mbox{Mediator to dark matter } g_{\mbox{DM}} = 1 \end{array}$

Vector and axial-vector mediator

- ▶ Exclusion range increases from 1500 GeV to almost 5000 GeV from CLIC-380 to CLIC-3000
- Systematic uncertainties have a large effect in particular for light DM

LHC-like coupling points

▶ LHC DM limits: $g_q = 0.25 \rightarrow \text{transfered to lepton colliders: } g_{lep} = 0.25$ (for prospects comparison only; not the same point in the model)

LHC-like coupling points

Scalar Dark Matter candidate

8000

Scalar Dark Matter candidate

Stau pair production

Signal processes:
$$e^+e^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \rightarrow \tau^+ \tau^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$
 and $e^+e^- \rightarrow \tilde{\tau}_2^+ \tilde{\tau}_2^- \rightarrow \tau^+ \tau^- \tilde{\chi}_2^0 \tilde{\chi}_2^0$

- stau-1 $\tilde{\tau}_1$ is the lightest of two states, decays to τ and neutralino
- diagonal mixing matrix: $\tilde{\tau}_1 = \tilde{\tau}_L$ and $\tilde{\tau}_2 = \tilde{\tau}_R$

production: the cross section depends on the beam polarisation

▶ CLIC baseline: less luminosity at P(e⁻)=+80 %, which disfavors $\tilde{\tau}_R$

decay: mixing of LH and RH $\tau \Rightarrow$ cross sections for $\tilde{\tau}_R$ are generally lower

 \Rightarrow right-handed $\tilde{\tau}_R$ challenging

Main background: $e^+e^- \rightarrow \tau^+ \nu_\tau \tau^- \bar{\nu}_\tau$

- Run Delphes CLICdet card on Signals and Background
- ▶ Use baseline polarisation scenario and compare to unpolarised scenario

Analysis for stau pair production

Selection adapted from LCD-Note-2012-004, optimised separately for right-handed staus:

- VLC jets with R = 0.7, N = 2
- ► Tau tagging: TauTagger efficiencies from LCD-2010-009 implemented in Delphes CLIC card
- $\begin{tabular}{ll} \bullet & 15^\circ < \theta_\tau < 165^\circ \\ ({\rm detector\ acceptance}) \end{tabular}$
- $p_T(au) > 30 \text{ GeV}$
- $\begin{array}{l} \blacktriangleright \quad \tilde{\tau}_L : 1 < \Delta \phi(\tau \tau) < 3.1 \\ \tilde{\tau}_R : 2 < \Delta \phi(\tau \tau) < 3.1 \\ (\text{suppress } e^+ e^- \rightarrow \tau \tau \text{ backgr.}) \end{array}$
- $m_{ au au} > 200 \, \mathrm{GeV}$
- angle of the di-tau system: $\tilde{\tau}_L : 0.8 < \theta(\tau \tau) < \pi - 0.8$ $\tilde{\tau}_R : 0.5 < \theta(\tau \tau) < \pi - 0.5$ (suppress $e^+e^- \rightarrow \tau \nu \tau \nu$ backgr.)

Results for stau production at 3 TeV

▶ 2 σ discovery significances in the neutralino mass $m_{\tilde{\chi}^0}$ vs. stau mass $m_{\tilde{\tau}}$ plane

- ► increasing the contribution from $P(e^-) = +80 \%$ favorable for $\tilde{\tau}_R$ discovery
- reminder: $\tilde{\tau}_1 = \tilde{\tau}_L$ is the lightest state

Dark photons

Dark photon production

Dark photons studied by J.-J. Blaising and presented in $\underline{19}$ August analysis group meeting

Dark photon A': dark matter candidate

- ▶ particle coupling very weakly to electrically charged particles and mixing with the photon
- cross section of $e^+e^- \rightarrow A' \rightarrow f\bar{f}$ is a function of the mass $m_{A'}$ and the kinetic mixing ϵ
- A' appears as a very narrow resonance with photon-like coupling

Signal process at CLIC: $e^+e^- \to \textbf{A}' \to \mu\mu$

- ► full lines: ISR, no selection cuts
- dashed lines: ISR+Beamspectrum, selection cuts
- beamspectrum increases the A' cross section
- mixing parameter $\epsilon = 0.01$

Dark photon analysis

J.-J. Blaising

Backgrounds					
	Process	σ [fb] 380 GeV	σ [fb] 1500 GeV	additional processes $\blacktriangleright e^+e^- \rightarrow WW \rightarrow u^+u^- v\overline{v}$	
	$e^+e^- \rightarrow \mu\mu$ $\gamma\gamma \rightarrow \mu\mu$ $e^-\gamma \rightarrow e^-\mu^+\mu^+$	1650 229 336	177 457 244	• $e^+e^- \rightarrow \tau^-\tau^+ \rightarrow \mu^+\mu^-$ are small and can be reduced with missing ET cut	
Sele	ction:			$ \begin{array}{c} 0 \\ \mathbf$	
► at	t 380 GeV: • $10 < \theta(\mu) < 17$ • $p_T > 30 \text{ GeV}$ • $M(\mu\mu) > 100 \text{ G}$	0° eV	 at 1500 GeV: 10 < θ(μ) < 170° ρ_T > 100 GeV M(μμ) > 300 GeV 	2000 400 2000 400 400 400 400 400	
For each mass point, the $M(\mu\mu)$ window is chosen to maximise S/\sqrt{B} . The second se					

Resulting limits on dark photons

Counting experiment in the signal region with $M(\mu\mu)$ window

Signal with $m_{A'} = 1400 \, {\rm GeV}$ and $\epsilon = 0.01$: visible over SM backgrounds with $S/\sqrt{B} = 18$

J.-J. Blaising

 \rightarrow see talk by P. Roloff (BSM)

Conclusion

- ► Various analyses performed in the context of the European Strategy update comparisons
- ▶ Results have appeared in talks in Granada and will be a part of the Briefing Book

Study	Level	
Relaxions	Recast based on hidden valley studies	
SUSY benchmarks	Fast simulation study incl. backgrounds	
Stop pairs	Extend existing full sim study	
Electroweak Z couplings	Generator level/extrapolations	
Dark Matter	Recast mono-photon cross-section limits	
Stau Pairs	Delphes fast simulation incl. background	
Dark photons	Fast simulation study incl. backgrounds	

Studies by J.-J. Blaising, R. Franceschini, P. Roloff, U.S., R. Ström, A. Wulzer

Additional Material

Stau production discovery

5σ limits:

discovery limits for stau pair production at CLIC-3000

