Lepton Flavour Violating Higgs Boson decays in the Compact Linear Collider CLIC

Francisca Garay Walls

Pontificia Universidad Católica de Chile

2 Lepton Flavour Violation: motivation

- Both ATLAS and CMS collaborations have study Higgs Boson properties and found no significant deviations from SM predictions.
- Experimental data (neutrino oscillations) indicate that Lepton flavour is not an exact symmetry
- In the SM, the lepton flavour violating Higgs decays, h → τµ, h → τe, and h → µe are suppressed by the tiny neutrino masses and thus below any imaginable experimental sensitivity
- Observation of a flavour violating Higgs decay would therefore clearly indicate the presence of new physics.

3 Previous results

Previous studies have set upper limits (at 95% CL) on LFV Higgs decay branching ratios:

Searches:

```
\checkmark ATLAS: BR(h→τµ(e)) < 0.28%(0.47%) (13 TeV,
  L = 36.1 \text{ fb}^{-1}, see <u>arXiv:1907.06131</u> [hep-ex],
  2019), BR(h\rightarrow \mu e) < 6.1x10<sup>-3</sup> %, see (13 TeV, L =
  139 fb<sup>-1</sup>, see <u>ATLAS-CONF-2019-037</u>)
```

 \checkmark CMS: BR(h→ $\tau\mu$ (e)) < 0.25%(0.37%) (13 TeV, L=35.9 fb⁻¹, see <u>arXiv:1712.07173</u> [hep-ex], 2018)

4 Our analysis

Lepton Flavour Violating Higgs decays

 $H \rightarrow e\mu$

H → eτ

 $H \rightarrow \mu \tau$

We want to calculate limits on the branching ratios and improve significance using MVA techniques

Background

5 MC samples

- The signal ee→hvv and background ee→llvv processes were simulated using Whizard 1.95
- The effects of Beamstrahlung and ISR were included
- The Higgs mass was set to 126 GeV and unpolarised beams were assumed
- Then the events were passed to Pythia for (hadronisation and) decays (LFV added into decay table)
- The detector simulation and reconstruction chain with the CLIC_ILD detector model
- Pileup from γγ→hadrons interactions was overlaid to the physics events
- The cross-section for the signal sample is $\sigma = 244$ fb and for the background sample is $\sigma = 978.5$ fb
- The center of mass energy was assumed at 1.4 TeV

Туре	Energy	Detector	ProdID	Events planned	Events produced	σ [fb]	Comments
ee->hvv, h->emu	1.4 <u>TeV</u>	CLIC_ILD	8217	10000	10000	244.0 (1)	m(h) = 126 GeV
ee->hvv, h->etau	1.4 <u>TeV</u>	CLIC_ILD	11145	10000	10000	244.0 (2)	m(h) = 126 GeV NEW
ee->hvv, h->mutau	1.4 <u>TeV</u>	CLIC_ILD	11148	10000	10000	244.0 (3)	m(h) = 126 GeV NEW
ee->llvv	1.4 <u>TeV</u>	CLIC_ILD	8234	1500000	1570800	978.5	$I = e, \mu, \tau$; $v = v_e, v_\mu, v_\tau$; $5^\circ < \Theta(I) < 5^\circ$; $m(I,I) > 50 GeV$, $m(h) = 12 TeV$

6 Cuts and selected events

- Two opposite sign leptons with different flavour (e, μ)
- \odot E_e > 8 GeV
- 105 GeV < m_{eμ} < 140 GeV
 </p>

	Number of events	$oldsymbol{arepsilon}$ presel	Expected events						
Signal									
Tot events	9900	100%							
ee→hvv, h→eµ	8430	85.1%	32						
Background									
Tot. Events	1574397	100%							
ee→llvv	59306	3.76%	91979						

Table 1: Number of generated events in signal and background samples before and after selection cuts. Last row shows the number of expected events assuming a L = 2.5 ab^{-1} , $\sigma(ee \rightarrow hvv)=244 \text{ fb}$ and BR(h \rightarrow e μ) = $6.1x10^{-5}$ for signal and $\sigma(ee \rightarrow llvv)=978.5 \text{ fb}$

7 Variables

The variables that are being studied are:

- Invariant mass: m_{eμ}
- Sum of transverse momenta: $p_T(e)+p_T(\mu)$
- Transverse momenta: p_T(eμ)
- Angles: θ(eμ) and ϕ (eμ)
- The boost: $\beta_{e\mu}$
- \circ Cosine of the helicity angle: $\cos(\theta^*)$
- Visible energy: Evis
- Angular distance: ∇R_{eμ}

Invariant mass distribution for 104 GeV < $m_{e\mu}$ <145 GeV. Distribution is scaled to L = 2.5 ab⁻¹, $\sigma(ee \rightarrow hvv)$ =244 fb and BR($h\rightarrow e\mu$) = 100% for signal and $\sigma(ee \rightarrow llvv)$ = 978.5 fb

 $E_vis=E_e + E_\mu$ distribution between the final state particles

Cosine of the helicity angle, $cos(\theta^*)$

9 BDT and DNN

- We want to compare cut-based, Deep Neural Networks (DNN) and Boosted Decision Trees (BDT) to obtain the best cut with the best significance.
- The software is working for both models, but we still need to do a lot of studies

Just an example:

DNN > 0.8 Sig = 0.24	Efficiency	Expected events
Background	0.282%	7851
Signal	60.231%	21.58

¹⁰ Final state radiation (FSR) photons

- Studying the possibility to improve the invariant mass by adding FSR photons to final state electrons
- Adding all photons inside a cone of $\Delta R < 0.005$, 0.01, 0.05 and 1
- The bremsstrahlung effect leads to a tail at lower values on the invariant mass
- This loss can be recovered by adding FSR photons
- The tail of the distribution seems to be improved (events shifted toward larger values)
- At large opening angles, the recovery leads to wider distribution at higher masses.
- TO DO: This can be further improved by choosing the ΔR that give an invariant mass closest to the Higgs Boson mass

11 Conclusion

- ✓ The analysis for H→eµ is ongoing
- ✓ TO DO:
 - We want to add final state radiation (FSR) photons to the invariant mass distribution
 - The machinery is all working (Selection and MVA techniques). Now we have to play with it
- ✓ Once the analysis for $H\rightarrow e\mu$ is done, we will move to $H\rightarrow \tau\mu$ and $H\rightarrow \tau e$ channels.

Analysis team:

Francisca Garay
Philipp Rholloff
Bárbara Cid (student)
Raimundo Hoppe (student)

Thank you!

 $\nabla R_{e\mu}$ distribution between the final state particles

	Number of events	Percent	Expected events						
	Sig	nal							
Tot events	9900	100%							
ee→hvv, h→eµ	8935	33.4							
Background									
Tot. Events	1574397	100%							
ee→llvv	405979	25.78%	611563						

Table 1. Number of generated events in signal and background samples before and after selection cuts. Last row shows the number of expected events assuming a L = 2.5 ab⁻¹, $\sigma(ee \rightarrow hvv)=244$ fb and BR(h $\rightarrow e\mu$) = 6.1x10⁻⁵ for signal and $\sigma(ee \rightarrow llvv)=978.5$ fb

Results:											
Efficiency: Mass Point/CutVal	Cut-Base	d 0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
Background treeLFV_sgn_ntuple Average	4.094 88.365		2.642% 85.073%	2.208% 83.407%	1.843% 81.457%	1.515% 78.889%	1.141% 75.398%	0.754% 69.979%	0.282% 60.231%	33.669%	
Yields: Mass Point/CutVal 0.9	Initial	Cut-Based	0.1	0	.2	0.3	0.4	0.5	0.	6 0.	7 0.8
Background	1.042e+06	9.198e+04	4.265e+04	3.315e+	04 2.752	2e+04 2.3	00e+04 1	1.920e+04	1.579e+0	4 1.188e+0	4 7.851e+03
2.933e+03 treeLFV_sgn_ntuple 1.207e+01	3.584e+01	3.167e+01	3.115e+01	3.049e+	01 2.989	0e+01 2.9	19e+01 2	2.827e+01	2.702e+0	1 2.508e+0	1 2.158e+01
Significance: Mass Point/CutVal 0.9	Cut-Base	d 0	.1	0.2	0.3	0.4	0.5	5 0	.6	0.7	0.8
treeLFV_sgn_ntuple	1.044e-0	1 1.508e-0	01 1.674e	-01 1.80	2e-01 1.	925e-01	2.040e-01	 1 2.151e-	01 2.300	e-01 2.436	e-01 2.228e-

