

Event generation for mono-photon analysis

J. Kalinowski*, W. Kotlarski+, <u>P. Sopicki</u>*, F.A. Żarnecki*

*University of Warsaw

† Technische Universität Dresden

CLIC Workshop 28.08.2019

Some intro...

Neutrinos processes used as background and for the tests shown in this talk

Basic distributions may differ depending on the DM Model

Some intro...

- Aim is to avoid double-counting of ISR and matrix element photons (ME-pht)
- Tests presented here aim to separate ISR from ME-pht and to cross check whizard generation performance
 - Whizard generator offers flags and tools
 - For cross check: a semi-analytical generator KKMC was used. MC tuned for LEP

S. Jadach, B.F.L. Ward, Z. Wąs Computer Physics Communications 130 (2000) 260–325

ISR cut off?

 $q_{-} = 2\sqrt{(E_{e_{-}}E_{\gamma})\sin(\frac{\theta_{\gamma}}{2})}$

Whizard flag *isr_q_max* tested – failed to compute correct cross section – *manual* selection

ISR cutoff using momentum transfer

- Cuts performed to obtain basic selection
 - Cut on theta of photons: 7° on both sides
 - Minimum Energy requirement for photons: E > 5 GeV

Efficiencies

Whizard: theta: 0,652
 En: 0,504
 all: 0,0959

• KKMC: theta: 0,329 En: 0,499 all: 0,0976

Distributions of events in the same phase space for KKMC

- Photon distributions agree between MCs
- Merging procedure works nicely

Simple Dark Matter Model (by W. Kotlarski)

X – Dirac, real or complex Dark Matter particle

Y – real (scalar) or vector mediator

One can steer the masses, mediator widths and couplings between DM particles/electrons

Set-up used to check whether one can distinguish between different DM models using mono-photon analysis:

X masses set to 50 GeV Y masses set to 1000 GeV, initial width = 50 GeV (adaptive)

DM particle and real mediator (using absolute normalisation)

X Dirac masses set to 50 GeV; Y masses set to 1000 GeV, width = \sim 40 GeV

12

DM/fermions gen lev invariant mass after selection

Pt of the most energetic photon after selection

Comparison of *vv* background and SimpDM with Dirac DM particle and real mediator (using absolute normalisation)

X Dirac masses set to 50 GeV; Y masses set to 1000 GeV, width = \sim 40 GeV

Two models comparison:

- red:

50GeV Dirac DM and 1 TeV real (scalar) mediator with width ~40 GeV

XY coupling set to 1

- green:

50 GeV Dirac DM and vector mediator of 1TeV with width ~30 GeV

XY coupling set to 1

Two models comparison:

- red:

50GeV Dirac DM and 1 TeV real (scalar) mediator with width ~40 GeV

XY coupling set to 1

- green:

50 GeV Dirac DM and vector mediator of 1TeV with width ~30 GeV

XY coupling set to 1

Theta of #1 photon

Two models comparison:

- red:

50GeV Dirac DM and 1 TeV real (scalar) mediator with width ~40 GeV

XY coupling set to 1

- green:

50 GeV Dirac DM and vector mediator of 1TeV with width ~30 GeV

XY coupling set to 1

Two models comparison:

- red:

50GeV Dirac DM and 1 TeV real (scalar) mediator with width ~40 GeV

XY coupling set to 1

- green:

50 GeV Dirac DM and vector mediator of 1TeV with width ~30 GeV

XY coupling set to 1

Conclusions & Outlook

- Merging ISR photons with ME-pht and avoiding double counting at the same time works fine
- Very good agreement between Whizard and semi-analitical e+e-LEP-tuned KKMC in the central detector region
- Simple Dark Matter machinery passed first tests and is ready to be used in further analysis

- Lets see how this works with beam spectra, BeamCal to reduce Bhabha...

Thank you for your attention!

Backups

More models comparison:

- red: X=50 GeV Dirac, Y=1 TeV real, width ~40 GeV; X-to-Y coupling set to 1

- green: X=50 GeV Dirac, Y=1TeV vector, width ~30 GeV; X-to-Y coupling set to 1

- blue: X=50 GeV complex DM, Y=1TeV real, width ~MeV; X-to-Y coupling 1 GeV

- magenta: X=50GeV complex DM, Y=1TeV vector, width 6.5 GeV, XY-coupl =1

Pt of the most energetic photon after selection

Pt of #1 photon

More models comparison:

- red: X=50 GeV Dirac, Y=1 TeV real, width ~40 GeV; X-to-Y coupling set to 1

- green: X=50 GeV Dirac, Y=1TeV vector, width ~30 GeV; X-to-Y coupling set to 1

- blue: X=50 GeV complex DM, Y=1TeV real, width ~MeV; X-to-Y coupling 1 GeV

- magenta: X=50GeV complex DM, Y=1TeV vector, width 6.5 GeV, XY-coupl =1

More models comparison:

- red: X=50 GeV Dirac, Y=1 TeV real, width ~40 GeV; X-to-Y coupling set to 1

- green: X=50 GeV Dirac, Y=1TeV vector, width ~30 GeV; X-to-Y coupling set to 1

- blue: X=50 GeV complex DM, Y=1TeV real, width ~MeV; X-to-Y coupling 1 GeV
- magenta: X=50GeV complex DM, Y=1TeV vector, width 6.5 GeV, XY-coupl =1

Theta of selected photons