

Recent Activities on HV-CMOS Detectors at KIT

Ivan Peric

- Introduction of HVCMOS
- Engineering run in aH18 process, experimental results
- New foundry: TSI
- ATLASPIX3
- Planned new engineering run
- CLIC designs
- New ideas: small pixels and reduced detector capacitance

Introduction

- HVCMOS sensors, for CLIC, Mu3e, ATLAS, COMPASS, LHCB, P2, Belle II (planned)
- Motivation
- For ATLAS HVCMOS sensors promise large cost saving (> 10M), simpler module production, better reliability, less material...
- For Mu3e HVMOS is practically the only option since a high time resolution is needed and material budget is low (0.1% of radiation length/layer sensor must be 50µm thin)
- HVCMOS = depleted CMOS sensors with large collecting n-well electrode and pixel electronics inside

- Pixels are based on floating electronics structure pixel electronics is placed into a deep n-well.
- Deep-n-well fulfils two tasks:
- 1. Local substrate for electronics (isolated from p-substrate)
- 2. Charge collecting electrode.
- The p-substrate region below the deep n-well is depleted by setting substrate to negative HV. Typical depletion: 30 50μm for 80 to 200 Ωcm resistivity. Typical MIP signals are typically >5000e for 200 Ωcm substrate
- The substrate contacts are at the chip surface (undepleted parts of it)
- Largest capacitance from p-well/n-well junction

- The milestone in our development was the combined Mu3e and ATLAS run done in AMS aH18 process
- This process is compatible with the originally developed H18 (CMHV7SF) process from IBM (now Global Foundries)
- For this engineering run, AMS modified the process in two aspects high resistivity substrates were used and the deep-well layer added to isolate the deep n-well from shallow n-well. Not all designs used this option

- We had large MU3E design MUPIX8 1cm x 2cm. Pixel size is 80µm x 80µm. Readout is untriggered, zero suppressed
- The chip is working well, detection efficiency is excellent, signal to noise ratio ~50, and time resolution 6ns (RMS) after some corrections

efficiency noiserate per pixel / Hz **▼** efficiency ▲ noise 0.95 0.9 0.85 0.8 10 ¹ 60 80 120 140 160 100 threshold / mV

MuPix, ATLASPIX

- We had three ATLAS designs, two with untriggered and one with triggered readout. Pixel sizes are 130μm x 40μm and 60μm x 50μm. Area is about 3 mm x 20 mm
- The chips are also working well. Detection efficiency after irradiations (up to 2 x 10¹⁵neq/cm²) is very good (~99%). Time resolution is down to RMS 8ns.

CCPD 2ndGen I C3PD CCPD_1stGen Belle II Switcher MuPix8 **ATLASPix** M2 IsoSimple Simple **PMOS** IsoPMOS Trigger readout Triggerless readout

Summary of Efficiencies after Irradiation

 no tuning of 	no tuning of pixels; ≤ 81/10000 pixel masked					
Efficiency _{40 Hz}	sub- strate	thick- ness	bias voltage (#masked pixel)			
fluence (neq/cm²)	(Ω cm)	(µm)	60 V	70/75 V	80/85 V	90/95 V
n 2e15	80	62	98.5% (81)	98.4% (81)	98.6% (81)	
n 1e15	80	62	99.3% (38)		99.5% (38)	99.5% (39)
n 5e14	80	62	99.5% (19)			
n 2e15	200	100	96.5% (55)		98.7% (60)	98.7% (55)
n 1e15	200	100/725	98.7% (18)	99.4%	99.5%	99.4%
n 5e14	200	100	99.2% (14)			
p 5e14 (50 MRad)	200	100	≥ 99.6% (9)	≥ 99.7% (9)	≥ 99.9% (9)	
p 1e14 (10 MRad biased)	200	725	≥ 99.7%			

≥ means that the 40 Hz/pixel noise limit was not reached

- Deep p-well was used in one of the ATLASPIX simple chips to isolate CMOS comparator from sensor electrode. Another twin chips used no isolation and used NMOS-based comparator. Both versions of comparator worked good
- The use of deep p-well simplifies the comparator design and allows full swing output which makes the design more robust

- The chips have the following structure:
- Pixel matrix contains pixels. The contain collection electrodes n-wells filled with electronics.
- The electronics has CSA, feedback. The comparator with tune circuit is either placed in pixels (ATLASPIX) or on periphery (MUPIX)

- The periphery contains hit buffers. Every pixel has dedicated hit buffer. They receive time stamps and store them when hit arrives
- A priority logic organizes readout. The hit information is generated in the buffers: address, leading edge and tot time stamp. This information is formatted and sent serially off chip.

- After these nice results, we received the news from AMS that that production time will be increased
- AMS helped us to fine alternative produces TSI semiconductors that offers very similar process that is compatible in terms of design rules and transistor parameters with the H18.
- TSI is very open for process changes, they agreed to use high resistivity wafers and they can make deep p-well for us
- The layouts developed in IBM H18 and AMS aH18 can be used in TSI.
- In contrast to aH18, TSI offers 7 metal layer option which is very useful
- TSI is based in Sacramento, USA
- Engineering run cost about 100k€

ATLASPIX3

- ATLASPIX3 chip designed in TSI process.
- This is a large chip 2 x 2 cm chip with 50µm x 150µm pixels. It has the same signal interface as Rd53 and it can be used to build quad modules for ATLAS
- It has implemented triggered- and, as test feature, untriggered readout

ATALSPIX3

ATALSPIX3

KIT

- HVCMOS sensor for quad module
- Implemented in TSI 180nm HVCMOS technology, licensed IBM/AMS H18 process
- Features and data interface similar as RD53
- Supports triggered readout with trigger latency up to 25µs
- Interface:
- Input CMD line (used for clock generation, L1 triggering with trigger tag, configuring and readback of configuration), like RD53
- Output: Aurora 64b66b, 1.28Gb/s, hit words
 32bits, EoE words
- Supports serial powering (only one power supply)
- Size: 20.2mm x 21mm
- Submitted in April 2019

ATLASPIX3 chip has been produced and we started with first tests this week

- We are planning two more engineering runs in TSI in 2019. A large chip for Mu3e MUPIX10 will be submitted within the first run in October.
- The second run will be shared within many projects and is planned for end of December.

CLIC	LHCB	Counting pixels for hadron therapy	TBD					
		Small pixels	Pixel readout chip (hybrid detectors)					
Multi purpose chip (Belle II)								

The second run will be shared within many projects.

- CLIC design with elongated pixels 25 x 300 um and the readout and periphery similar to ATLASPIX simple
- 10 bit leading edge time stamp and 7 bit TOT time stamp
- The pixels would contain CSA and comparators that would be implemented as CMOS circuits and isolated by deep p-well.

- All previously mentioned sensor would be based on the pixels with large fill factor, the deep n-well filled with electronics
- Since TSI can make deep p-well we can also do low fill factor sensors. We plan following test sensor:
- The pixels would have size of 25µm x 25µm size and in-pixel electronics with CSA, comparators, time measurement and priority based readout.
- 10 bit leading edge and 6 bit TOT time stamp would be implemented per pixel

Matrix with small pixels

P-substrate (200 Ohm cm)

- Improvements of standard HVCMOS stracture are possible
- Idea: reduce capacitance by reverse biasing of deep-pwell to n-well junction

P-substrate (200 Ohm cm)

P-substrate (200 Ohm cm)

Summary

- Engineering run in aH18 process, experimental results presented
- New foundry: TSI
- ATLASPIX3 introduced
- Planned new engineering run
- CLIC designs
- New ideas: small monolithic pixels and reduced detector capacitance

Thank you