CLIC-inspired detector for FCC-ee

Emilia Leogrande, Konrad Elsener, Oleksandr Viazlo on behalf of the FCC and CLICdp collaborations

CLICdp collaboration week 2019, CERN

27 August 2019

Introduction

CLIC

- Compact Linear Collider (e⁻e⁺)
- 3 energy stages: 380 GeV, 1.5 TeV, 3 TeV
- 0.5 ns between bunches
- 20 ms between bunch trains
 → Power Pulsing of electronics

FCC-ee

- Future Circular Collider (e⁻e⁺)
- Continuous operation
- 4 energy stages:
 Z, WW, HZ, tt̄
- Bunch spacing:
 20, 163, 994, 3396 ns

- Both experiments demand state-of-the-art detectors with:
 - low-material tracking system
 - precise calorimetery
- CLD "CLIC Like Detector", model derived from CLICdet and optimized for FCC-ee experimental conditions
- There is a second proposal for FCC-ee which is called IDEA (see backup).

Detector Constraints from the Accelerator Design

- In order to maximize luminosity final focusing quadrupole chosen to be at 2.2m from IP - inside the detector.
- Compensating solenoid to protect the beam from detector magnetic field.
- Luminosity monitor (LumiCal) is inside MDI region.
- Central detector has to be fitted within ± 150 mrad \rightarrow constrains forward region.
- To prevent emittance blow-up from detector magnetic field due to non-zero crossing angle the maximum possible detector magnetic field is constrained to 2T.

CLD and CLICdet detector models

- Full silicon tracking system provides ≥12 hits per track
 - R_{outer} = 1.5m CLICdet
 - R_{outer} = 2.1m CLD increased material budget for 50% in VTX - CLD
- Fine-grained ECAL and HCAL optimised for particle flow reconstruction
- Superconducting solenoid is outside of the calorimeters
 - 4T field CLICdet
 - 2T field CLD
- Steel return yoke with muon chambers
 2 m thickness CLICdet

 - 1.5 m thickness CLD
- Support structures, cables and services are implemented in the simulation models

CLD and CLICdet detector models

- Full silicon tracking system provides ≥12 hits per track
 - R_{outer} = 1.5m CLICdet
 - R_{outer} = 2.1m CLD

increased material budget for 50% in VTX - CLD

- Fine-grained ECAL and HCAL optimised for particle flow reconstruction
- Superconducting solenoid is outside of the calorimeters
 - 4T field CLICdet
 - 2T field CLD
- Steel return yoke with muon chambers
 2 m thickness CLICdet

 - 1.5 m thickness CLD
- Support structures, cables and services are implemented in the simulation models

Oleksandr Viazlo

VTX and Tracker Layout of CLD

- Vertex detector
 - Barrel: 3 equidistant double layers at 17-60 mm (31-60 mm at CLICdet)
 - Endcap: 3 double layer disks instead of spiral structure (no air cooling)
 - Material budget: 0.6% X0 per double layer (+50% compared to CLICdet for additional cooling, inspired by ALICE ITS upgrade technology)
- Tracker
 - Outer radius of 2.1 m (1.5 m at CLICdet)
- Forward region
 - 150 mrad reserved for MDI

VTX and Tracker Layout of CLD

- Vertex detector
 - Barrel: 3 equidistant double layers at 17-60 mm (31-60 mm at CLICdet)
 - Endcap: 3 double layer disks instead of spiral structure (no air cooling)
 - Material budget: 0.6% X0 per double layer (+50% compared to CLICdet for additional cooling, inspired by ALICE ITS upgrade technology)
- Tracker
 - Outer radius of 2.1 m (1.5 m at CLICdet)
- Forward region
 - 150 mrad reserved for MDI

Calorimeter system of CLD

Electromagnetic Calorimeter

- Si-W sampling calorimeter
- cell size 5x5 mm²
- 40 layers (1.9 mm thick W plates)
 - options with 30, 20+10 and 20 layers are considered as well
- Depth: 22 X₀, 1 λ_I, 20 cm

Hadronic Calorimeter

- Scintillator-steel sampling calorimeter
- cell size 30x30 mm²
- 44 layers
 - 60 layers (CLICdet)
- Depth: 5.5 λ_I (inspired by ILD)
 - 7.5 λ_I (CLICdet)

No studies concerning CLD calorimeter cooling were done. It is assumed to be the same as for CLICdet.

Beam-induced backgrounds at FCC-ee

- Synchrotron radiation
 - Appropriate masking stops SR photons from hitting the central beam pipe
 - Small effect
- Beamstrahlung induced backgrounds
 - Incoherent e⁺e⁻ pair production (is simulated during performance studies)
 - $\gamma\gamma \rightarrow$ hadrons (small effect)

- Beam-gas interactions and radiative Bhabhas
 - expected to have small effect

Beam-induced backgrounds at FCC-ee

- The energy from incoherent pairs deposited in the ECAL and HCAL
- Has been studied as a function of z in the barrel and as function of radius in the endcap

- For background studies with CLD following number of bunch crossings (BX) are overlaid to the physics event:
 - 20 at \sqrt{s} = 91.2 GeV • 3 at \sqrt{s} = 365 GeV
- Energy deposits reach up to 0.2 GeV / 10 cells in ECAL Barrel and 3 GeV / 50 mm in HCAL Endcap per 20 BX

Momentum resolution: CLICdet vs. CLD

ullet Transverse momentum resolution for single muons with CLICdet and CLD detector models as a function of momentum for different heta angles.

- Overall comparable tracking performance of both detectors
- ullet Both detectors reach designed momentum resolution of $2\times10^{-5} \mbox{GeV}^{-1}$
 - the lower magnetic field of the CLD model is compensated by a larger radius of tracker

d₀ resolutions: CLICdet vs. CLD

• d_0 resolution for single muons with CLICdet and CLD detector models as a function of θ for 1, 10 and 100 GeV energies

 CLD detector model has superior d₀ resolution due to smaller radius of innermost vertex layer (17 mm for CLD versus 31 mm for CLICdet)

d_0 resolution with CLD

- Continuous operation of FCC-ee doesn't allow power-pulsing → an airflow cooling is not sufficient for VTX detector.
- Nominal CLD material budget is 0.6% X₀ per double layer in Vertex (inspired by ALICE ITS upgrade technology).
- See effect from additional +50% increase in material budget (0.9% X₀) and from a variation of single point resolution.

- Mild impact with +50% increase of vertex detector material budget
- A strong correlation of d₀ resolution with single point resolution particularly at high momenta

Tracking performance with prompt muons

- Tracking efficiency with isolated prompt muons:
 - efficiency = fraction of reconstructed particles out of the reconstructable
 - reconstructable particle:
 - $p_T > 0.1 \text{ GeV}$ • $|\cos \theta| < 0.99$
 - # unique hits: 4 for prompt muons

- Conformal tracking has been additionally tuned for CLD detector
- Tracking is fully efficient starting from 100 MeV

Tracking performance with displaced muons

- Tracking efficiency with displaced prompt muons:
 - efficiency = fraction of reconstructed particles out of the reconstructable
 - reconstructable particle:
 - $p_T > 0.1 \text{ GeV}$ • $|\cos \theta| < 0.99$
 - # unique hits: 5 for displaced muons

- Tracking algorithm successfully reconstructs displaced tracks:
 - sharp drops at \sim 340 mm for CLICdet and \sim 400 mm for CLD correspond to the position of 8-th silicon layer
 - → not enough hits for track reconstruction (5 hits per track is required)

Tracking performance in complex events

- Tracking efficiency with light flavour di-jets $Z \to q\bar{q}$ (q=u,d,s) with and without beam induced background:
 - additional requirement on track purity > 75%
 - purity = #hits left by MC particle / #hits in track

- Tracking is fully efficient from $p_T \approx 500 \text{ MeV}$
- > 90 % efficiency for low momentum tracks ($p_T = 100 500 \text{ MeV}$)
- Robustness against beam background

CLD tracking performance with $Z o b \bar{b}$

- \bullet Tracking efficiency with di-jets $Z\to b\bar b$ with and without beam induced background:
 - additional requirement on track purity > 75%
 - purity = #hits left by MC particle / #hits in track

- Tracking is fully efficient from $p_T \approx 500 \text{ MeV}$
- Robustness against beam background

Heavy flavour tagging efficiencies at CLD

- c- and b-tagging efficiencies for central region ($\theta = 80^{\circ}$) of CLD model:
 - comparison of tagging efficiencies with using conformal and truth tracking
 - truth tracking = assuming perfect pattern recognition

- \bullet b-tagging (c-tagging) at 80% eff.: \approx 4% (15%) miss-id. for c (b) and \approx 1% (20%) for light flavour
- Some deviation between truth and conformal tracking → work is ongoing
- Flavour tagging performance with CLICdet can be found at a talk by Erica

Jet Energy Resolution

- Event reconstruction is done with PandoraPFA particle flow package
- JER is studied with di-jet events using $Z o q\bar{q}$, (q = u, d, s)
 - · no simulation of beam-induced background effects
 - jet energy is calculated as half of the energy sum of all reconstructed particles

- Comparable jet energy resolutions for CLICdet and CLD models:
 - 4-5 % with \approx 50 GeV jets
 - 3-4 % with >100 GeV iets

Jet Energy Resolution with beam-induced background overlaid

- Jets are reconstructed with Valencia clustering algorithm in two-jet exclusive mode
 - CLICdet: $\Delta R = 0.7$, loose PFO selection applied to suppress beam-induced background
 - CLD: $\Delta R = 1.1$, no timing or p_T cuts are applied, 400 ns integration time window

- mild increase of the jet energy resolution due to background for CLICdet
- overall the impact of beam-induced background at FCC-ee is negligible at both centre-of-mass energies except a very forward region

The angular resolution of jets

- Comparable resolutions for both detector models
- ullet The ϕ resolution for jets is worse than the heta resolution due to the effect of the magnetic field
- Degradation of the ϕ resolution with $\cos(\theta)$ can be explained with detector granularity

W-Z Mass Peak Separation

- Study of the ability to distinguish hadronic decays of W- and Z-bosons
- Two processes of interest: $WW \to \mu\nu_{\mu}qq$ and $ZZ \to \nu\nu qq$ (250 GeV)
 - decay products from leptonic decays of bosons are excluded from the jet reconstruction

- Due to different background different ΔR values have been used for VLC clustering algorithm for CLD ($\Delta R = 1.1$) and CLICdet ($\Delta R = 0.7$)
- \bullet Both detectors provide a possibility to distinguish W- and Z-boson peaks with separation power of 2.2-2.5 σ

Optimization of ECAL of CLD detector model for FCC-ee

- CLD ECAL performance for different sampling options
 - $\bullet\,$ all options have the same total thickness of $\approx 22~X_0$

Layer structure	Thickness tungsten alloy [mm]	Total thickness per layer [mm]
40 uniform	1.9	5.05
30 uniform	2.62	5.77
20 uniform	3.15	7.19
20 thin + 10 thick	1.9 + 3.8	5.05 + 6.95

- 40 layers configuration provides the best photon performance
- 20+10 layers configuration provides better performance at low energies compared for 30 layers which probably better fits needs of FCC-ee
- 20 layers option leads to significant degradation of photon resolution

Summary and Outlook

The CLD detector model is the most mature detector concept for FCC-ee which:

- is based on the CLICdet concept
- has well-understood detector performance with FCC-ee experimental conditions based on full simulation studies (thanks to iLCSoft)
- provides a possibility to make physics analyses including the effect from beam-induced backgrounds

Ongoing studies and plans

- Detector performance with reduced beam pipe diameter
- Calorimeter layout optimization
- Possibilities of more compact tracker
- Increase ECAL forward coverage
- Detector-MDI integration studies

Thank you for your attention!

BACKUP

IDEA detector concept

- Vertex Si detector
 - 7 pixel layers
- Ultra light wire drift chamber
 - 4m long, 2m of radius, 0.4%X₀
 - 112 hits per track with particle ID
- One Si layer outside drift chamber
- Ultra-thin 20-30cm solenoid (2T)
 - Acts as preshower (1X₀)
- Dual readout fibre calorimeter
 - 2m long, longitudinal segmentation
- Instrumented return yoke

Dual readout calorimetry

- Main idea to use 2 different sampling processes:
 - Cherenkov light (produced by relativistic particles and dominated by the el.-m. shower component)
 - Scintillation light production (for the total deposited energy)
- Calorimeter consists from 2 types of fibers, Cherenkov and Scintillation fibres, which provides two different measurements:

$$\begin{split} C &= E[f_{em} + \frac{1}{(e/h)_C}(1 - f_{em})] \\ S &= E[f_{em} + \frac{1}{(e/h)_S}(1 - f_{em})] \end{split}$$

- Allows to measure f_{em} fluctuations correction event-by-event
- Longitudinal segmentation provided by using short and long fibers
- Dedicated test beams are ongoing

