
Key4HEP - The Common 
Turnkey Software Stack

Pere Mato, for the CERN EP-SFT group

CLICdp Collaboration Meeting, 28 August 2019



Experiment Software Lifecycle I
● First ideas and inspiration…

○ Cool idea... would that work?

● Concepts
○ Very fast approximate methods, e.g. Delphes (smeared 

tracks, etc.)

● Design
○ Still need to be flexible to decide between alternatives
○ Ultimately need to pay a lot of attention to details for 

accurate performance evaluation
■ Accurate geometry, full simulation, realistic 

digitisation, ...

2



Experiment Software Lifecycle II
● Production

○ Dealing with the real world - calibration, alignments, dead 
and noisy elements

○ Learn about the detector, need stability but also continual 
improvements

● Upgrade
○ Design better sub-detectors for the next version

● Preservation
○ How can I make sure we can look at the data in the future?

For new experiments not everything needs to, or should be, solved 
up-front, but forgetting about the next step entirely will cause problems 

down the line (technical debt!)

Snippet from 
CERNLIB 3



HEP Application Software

4

Many widely used non-HEP libraries: Boost, 
Python, Zlib, CMake, … 

Provide core functionality widely used: ROOT, 
HepMC, HepPDT, DD4hep, ...

Specific components used by many 
experiments: Geant4, DELPHES, Pythia, ...

Experiment core orchestration layer, where 
everything else plugs in: Gaudi, CMSSW, Marlin

Usually experiment specific libraries for data 
representation and access: xAOD (but LCIO!); also 
detector specific conditions data

Application layer of modules/algorithms/processors 
that perform physics tasks (some generic examples 
like FastJet and PandoraPFA)

M
os

t G
en

er
al

 →
 M

os
t S

pe
ci

fic



Building HEP Applications

5

● Each piece of software does not live in 
isolation

● There is an ecosystem of interacting 
pieces

● Compatibility between the elements 
doesn’t usually come for free

○ Common standards do help a lot

● Building a consistent set of software for 
an experiment is a task in itself

○ But the software used to do it benefits from 
commonality

○ LCGCMake, Spack, etc.



Constituent Components
● Foundation Libraries

○ Basic types
○ Utility libraries
○ System isolation libraries

● Mathematical Libraries 
○ Special functions
○ Minimization, Random Numbers

● Data Organization
○ Event Data
○ Event Metadata (Event collections)
○ Detector Description
○ Detector Conditions Data

● Data Management Tools
○ Object Persistency
○ Data Distribution and Replication

6

● Simulation Toolkits
○ Event generators
○ Detector simulation

● Statistical Analysis Tools
○ Histograms, N-tuples
○ Fitting

● Interactivity and User Interfaces
○ GUI
○ Scripting
○ Interactive analysis

● Data Visualization and Graphics
○ Event and Geometry displays

● Distributed Applications
○ Parallel processing (concurrency)
○ Distributed computing (grid/cloud/...)



Motivation

● Future detector studies critically rely on well-maintained software stacks to 
model detector concepts and to understand a detector’s limitations and 
physics reach

● We have a scattered landscape of specific software tools on the one hand and 
integrated frameworks tailored for a specific experiment on the other hand

● Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with ready 
to use “plug-ins” to develop detector concepts

● Identified as an important project in the CERN EP R&D initiative
● Reached consensus among all communities for future colliders to develop a 

common turnkey software stack at recent Future Collider Software Workshop

7

https://cds.cern.ch/record/2649646
https://agenda.infn.it/event/19047/


Goals

● Put together a stack of the software packages covering the different domains
○ most commonly used, avoiding as much as possible functionality overlaps

● The turnkey stack connects and extends the individual packages to enable a 
complete data processing ecosystem 

○ converting a set of disconnected packages into a ‘turnkey’ system 

● and should be
○ easy to use: for librarians, developers, users
○ easy to set up
○ easy to deploy (CVMFS and containers)
○ easy to extend
○ full of functionality

● Plenty of examples/templates for simulation and reconstruction of detectors

8



Interoperability I

● Level 0 - Common Data Formats
○ Allows interoperability between different programs, even running on different hardware
○ E.g., HepMC event records, LCIO, GDML, ALFA messages

● Level 1 - Callable Interfaces
○ Basic calling interfaces defined by the programming language

■ Cross language calls are, of course, possible
○ Can be dependent on the compiler and language version (C++ in particular)
○ Details are important

■ how to handle errors and exceptions, is it thread safe, are objects const, dependent 
libraries and runtime setup

○ E.g., FastJet, Eigen, Boost

9



Interoperability II

● Level 2 - Introspection Capabilities
○ Software elements to facilitate the interaction of objects in a generic manner such as 

Dictionaries and Scripting interfaces 
○ Example: PyROOT, which is a Python extension module that allows the user to interact with any 

ROOT (C++) class from the Python interpreter

● Level 3 - Component Model
○ Software components of a “common framework” offers maximum re-use
○ ‘standard’ way to configure its parameters, to log and report errors, manage object lifetime and 

ownership rules, ‘standard’ plug-in management, etc.
○ Unfortunately, no single Framework has been generally adopted

The right interoperability point between packages varies, but fixing it correctly 
eases life a lot for other developers and users

10



HSF Project Template

● To enable interoperability and long 
term maintainability 

○ Build system
■ Share build results, but also knowledge of 

how to build
■ HSF Packaging working group studying 

various options
○ Testing
○ Licensing and Copyright
○ Documentation

■ If it is not documented, does it exist?

● Ensure as much uniformity as reasonable
○ https://github.com/HSF/tools 

11

https://github.com/HSF/tools


EDM4HEP

● To achieve the highest levels of interoperability components should directly 
talk the same language

○ For HEP this is the Event Data Model, EDM

● The experience of the ILC/CLIC community in sharing an EDM has been a very 
positive one

○ Defining it may not be easy
○ But once achieved it pays off handsomely

● As an outcome of the Future Collider Software Workshop a small working 
group is being setup (ILC/CLIC/FCC/CECP) to discuss this

○ Our baseline is the highly successful LCIO from the linear collider community

12



Implementing the EDM

● Original HEP C++ Event Data Models were heavily 
inspired by the Object Oriented paradigm

○ Deep levels of inheritance
○ Access to data through various indirections
○ Scattered objects in memory

● In practice access to the data in this way can be very slow
○ LHC experiments needed to optimise this a lot during Run 2

● Challenges in this area are only growing
○ As well as increasing memory latency, we look more and more towards accelerated computing devices

● Use PODIO EDM generator
○ Data model described at a high level in YAML
○ Code is then generated for target languages and different persistency backends
○ Insulates users from implementation details and allows for common optimisation 

13



Experiment Framework

● Data processing frameworks are the skeleton on 
which HEP applications are built

● To get software to ‘click’ in the best way possible it’s a huge advantage to share a 
software framework

○ In HEP we have traditionally not done so well here - many frameworks and a lot of duplication of effort

● Marlin was used by the LC community and was very successful as a common 
project

○ Unfortunately very far behind in conversion to modern concurrency needs
○ It does have a lot of well liked features (e.g. configuration)

● Gaudi is another shared framework, used by LHCb and ATLAS, as well as smaller 
experiments

○ Supports concurrency and has all hooks needed for data taking

● We will base Key4HEP on Gaudi and contribute to development where needed
14



Gaudi Modernisation Project

● A lot of the very 
hard things are 
done

● Improved 
documentation 
coming

● CMake build system 
being rewritten this 
summer

15



Practical Progress

● To help integrate ILCsoft algorithms into Key4HEP a Marlin→Gaudi wrapper has 
been developed (André Sailer) → Next talk

○ https://github.com/andresailer/GMP 
○ Prototype for now, but proves that framework transition is quite practical to achieve

● As part of the AIDA2020 project LCIO has been re-implemented using PODIO 
(Frank Gaede)

○ This demonstrates, as expected, that PODIO can implement a generic data model like LCIO
○ Some interface changes, e.g. shift from pointer to by-value semantics

■ These can probably be temporarily masked

16

https://github.com/andresailer/GMP


Next Steps and Conclusions
● General agreement on moving to a common HEP software stack from future 

experiments
○ A lot to be learned from ILC/CLIC experiments in how to do this and the benefits

■ N.B. ILCsoft and Marlin will keep working for LC

● Move build infrastructure to Spack tool
○ Sustainable build orchestrator with wide support for scientific software packages (developed by LLNL)
○ Many elements of HEP software are already supported

● Progress on EDM4HEP
○ Begin by looking at LCIO and FCC EDM

● Provide common and popular HEP package sets and ensure their interoperability
● Gaudi framework to bind elements together
● Shims to form a plugin system of software that really works coherently

Key4HEP will support ILC/CLIC software development
17


