

Real Time Classifier for transient signals in Gravitational Waves

From raw data to classified triggers

Elena Cuoco

European Gravitational Observatory and Scuola Normale Superiore

LIGO/Virgo data

• are time series sequences… **noisy time series** with low amplitude GW signal buried in

Which kind of astrophysical source?

Which kind of noise?

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)

 $\textsf{MOME}\mathbf{G}\mathbf{O}^{\textsf{EUROPEAN}}_{\textsf{GRAVITATIONAL}}$

E. Cuoco 1st RTA workshop-2019, Institut Pascal

Which kind of data analysis techniques?

Known transient signals

- Modeled search
	- Matched filter

Unknown transient signals

- Un-modeled search:
	- Excess of energy detector

Known Continuous signals

- Modeled search
	- Integration method over long period

Unknown Stochastic signals

- Un-modeled search
	- Correlation between detectors

5

CBC Gravitational Wave signals

An artist's impression of two stars orbiting each other and progressing (from left to right) to merger with resulting gravitational waves. [Image: NASA/CXC/GSFC/T.Strohmayer]

An example signal from an inspiral gravitational wave source. [Image: A. Stuver/LIGO]

EUROPEAN
GRAVITATIONAL
OBSERVATORY *IIOIIEGC*

Modeled signals: Matched filter in action

Unmodeled signals

- Strategy: look for excess power in single detector or coherent/coincident in network data
- Example cWB [\(https://gwburst.gitlab.io/\)](https://gwburst.gitlab.io/)

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.

Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

arXiv:1811.12907

The first GW catalog (O1/O2 run)

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed [by LIGO and Virgo during the First and Second](https://arxiv.org/abs/1811.12907) Observing Runs arxiv.org/abs/1811.12907

\textsf{M} EGO GRAVITATION

O3 event rate ~1/week

GraceDB - Gravitational Wave Candidate Event Database

 \textsf{M} EGO GRAVITATIONAL

How Machine Learning can help real time analysis

Low Latency data analysis

From few minutes to 30 minutes

GW alert system

Time since gravitational-wave signal

https://emfollow.docs.ligo.org/userguide/index.html

17 August 2017, 12:41:04 UT: The MultiMessenger Astronomy

[DOI:](https://it.wikipedia.org/wiki/Digital_object_identifier)[10.1103/PhysRevLett.119.161101](http://dx.doi.org/10.1103/PhysRevLett.119.161101).

\textsf{M} EGO GRAVITATIONAL

Numbers about Virgo data

Should be analysed in less than 1min

How Machine Learning can help

Data conditioning

- Identify Non linear noise coupling
- Use Deep Learning to remove noise
- Extract useful features to clean data

Signal Detection/Classification/PE

- A lot of fake signals due to noise
- Fast alert system
- Manage parameter estimation

Example of Glitch signals

https://www.zooniverse.org/projects/zooniverse/gravityspy

Gravity Spy, Zevin et al (2017)

17

Why Signal Classification?

- If we are able to classify the noise events, we can clean the data in a fast and clear way
- We can help commissioners
- We can identify glitch families

Artificial Intelligence workflow

 \textsf{M} EGO GRAVITATIONAL

Glitch classification strategy for GW detectors

Two different approaches

• Images

sed deep learning for classification of noise transients in gravitational wave detectors, ano Razzano**, Elena Cuoco**, Class.Quant.Grav. 35 (2018) no.9, 095016

• Time series

Wavelet-based Classification of Transient Signals for Gravitational Wave Detectors**, Elena Cuoco**, Massimiliano Razzano and Andrei Utina, #1570436751 accepted reviewed paper at EUSIPCO2018

IIOII EGO GRAVITATION TATIONAL

Glitches classifcation

- Application on Simulated data
- Application on Real Data
- Time-series (Wavelet) based classification
- Image based classification with Deep Learning

Test on simulated data sets

To test the pipeline, we prepared adhoc simulations

Add 6 different classes of glitch shapes

Simulate colored noise using public H1 sensitivity curve

More in Filip's Tutorial

Data simulation

IIOJIEGC

GRA

OBSERVATORY

- Ad hoc simulations for tests (e.g. Powell+2015)
- Simulate colored noise using public sensitivity curve
- ●6 classes of glitch shapes (+ NOISE one to check detection)

Razzano's courtesy

Simulated signal families

To show the glitch time-series here we don't show the noise contribution

Razzano M., Cuoco E. CQG-104381.R3

IIOII EGO GRAVITATIONAL

Signal distribution

Simulated time series with 8kHz sampling rate

Glitches distributed with Poisson statistics m=0.5 Hz

2000 glitches per each family

Glitch parameters are varied randomly to achieve various shapes and Signal-To-Noise ratio

\textsf{M} EGO GRAVITATIONAL

Data preprocessing

• **Many spectral features** • **Non stationary and non linear noise**

Spectrogram of V1:spectro_LSC_PRCL_300_100_0_0: start=1189731268.000000 (Mon Sep 18 00:54:10 2017 UTC)

MOWE GO OBSERVATION

Whitening in time domain

It can be useful for on-line application

It can be implemented for non stationary noise

It can catch the autocorrelation function to larger lags

AR parametric modeling

An AutoRegressive process is governed by this relation

$$
x[n] = -\sum_{k=1}^p a[k]x[n-k] + w[n],
$$

and its PSD for a process of order P is given by

$$
P_{AR}(f) = \frac{\sigma^2}{|1 + \sum_{k=1}^{P} a_k \exp(-i2\pi k f)|^2}
$$

Kay S 1988 Modern spectral estimation: Theory and Application Prentice Hall Englewood Cliffs

Advantages of AR modeling

• Stable and causal filter: same solution of **linear prediction** \mathbf{r}_{min}

$$
\hat{x}[n] = \sum_{k=1}^{P} w_k x[n-k].
$$

 \mathcal{L}

$$
e[n] = x[n] - \hat{x}[n]
$$

$$
\varepsilon_{\min} = r_{xx}[0] - \sum_{k=1}^{P} w_k r_{xx}[-k]
$$

$$
w_k = -a_k
$$

$$
\varepsilon_{\min} = \sigma^2
$$

Wiener-Hopf equations

Cuoco et al. Class.Quant.Grav. 18 (2001) 1727-1752 and Cuoco et al.Phys.Rev.D64:122002,2001

Signals in whitened data

Not Whitened

Whitened

EUROPEAN
GRAVITATION
OBSERVATORY **IIOIIEGC** ATIONAL

Wavelet based classification

• Time series

Wavelet decomposition of time series

The wavelet transform replaces the Fourier transform sinusoidal waves by a family generated by translations and dilations of a window called a wavelet.

$$
\mathsf{Wf}(a,b)==\int_{-\infty}^{+\infty}f(t)\frac{1}{\sqrt{b}}\psi^*(\frac{t-a}{b})\ dt
$$

Wavelet denoising

 $x_i = h_i + n_i$ $i = 0, 1, ... N - 1$ Wavelet transform $W(x) = W(h) + W(n)$ $t = \sqrt{2 \log N} \hat{\sigma}$ Local noise Threshold function $\hat{h} = W^{-1}(T(Wx))$

> Dohone and Johnston proposed two different thresholding strategy: the soft thresholding and the hard thresholding. Given a threshold t and w the wavelet coefficient, the hard threshold for the signal is w if $|w| > t$, and is 0 if $|w| < t$. The soft threshold for the signal is $sign(w)(|w|-t)$ if $|w| > t$ and is 0 if $|w| < t$.

Wavelet Detection filter as Event Trigger Generator

• Select highest values

$$
\mathit{E_{s}} = \sqrt{\sum_{k,j} w_{k,j}^2}
$$

• Reconstruct a proto-SNR

∝ Energy of the signal
Wavelet Detection Filter (WDF) workflow

Glitch-gram

Time-Frequency distribution by SNR slice

V1:Hrec_hoft_16384Hz: Time frequency glitchgram

WDF waveform extraction

- **Wavelet transform in the selected window size**
- **Retain only coefficients above a fixed threshod (Donoho-Johnston denoise method)**
- **Create a metrics for the energy using the selected coefficients and give back the trigger with all the wavelet coefficients.**
- **In the wavelet plane, select the highest values to build the event**
- **Inverse wavelet transform**
- **Estimate mean and max frequency and snr max of the cleaned event**

IIIOJI) E C

Gps, duration, snr, snr@max, freq mean, **f** [freq@max,](mailto:freq@max) wavelet type triggered + corresponding wavelets coefficients.

Waveform reconstruction

Waveform reconstruction: example

 -0.5

 -1.0

 -1.5

 0.5

 -1.0

 -1.5

Glitch classification, past works

• Unsupervised on Simulated data:

• Classification methods for noise transients in advanced gravitational-wave detectors Jade Powell, Daniele Trifirò, **Elena Cuoco**, Ik Siong Heng, Marco Cavaglià, Class.Quant.Grav. 32 (2015) no.21, 215012

• Unsupervised on Real data (ER7):

• Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data, Jade Powell, Alejandro Torres-Forné, Ryan Lynch, Daniele Trifirò, **Elena Cuoco**, Marco Cavaglià, Ik Siong Heng, José A. Font, Class.Quant.Grav. 34 (2017) no.3, 034002

Wavelet Detection Filter and XGBoost (WDFX)

\textsf{M} EGO GRAVITATIONAL

43

Supervised Classification: eXtreme Gradient Boosting

<https://github.com/dmlc/xgboost>

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016

XGBoost originates from research project at University of Washington, see also the Project Page at UW.

Tree Ensemble

$$
y_n = \sum_{k=1}^{K} f_k(x_n)
$$

dmlc **XGBoost**

$$
L = -\frac{1}{N} \sum_{1}^{N} ((y_i \log(p_i) + (1 - y_i)(\log(1 - p_i)) + \Omega
$$

Train/validation/test set: 70/15/15

WDFX: Binary Classification Results

Chirp-like signals OR Noise

Overall accuracy >98%

WDFX Results: Multi-Label Classification

Image-based classification

• Images

Glitch & Citizen science: GravitySpy

Www.gravityspy.org

Citizen scientists contribute to classify glitches

More details in Zevin+17

Sample glitch gallery

Examples of time-frequency glitch morphology (Zevin+17)

Sample glitch gallery

Livingston

Helix glitches

Koi fish glitches

Deep learning for Glitch Classification

- Many approaches to data: we choose image classification of time frequency images
- The architecture is based on Convolutional deep Neural Networks (CNNs).
- CNNs are more complex than simple NNs but are optimized to catch features in images, so they are the best choice for image classification

Pipeline structure

Input GW data

- Image processing
- Time series whitening
- Image creation from time series (FFT spectrograms)
- Image equalization & contrast enhancement

Classification

- A probability for each class, take the max
- Add a NOISE class to crosscheck glitch detection

Network layout

• Tested various networks, including a 4-block layers

Run on GPU Nvidia GeForce GTX 780

- 2.8k cores, 3 Gb RAM)
- Developed in Python + CUDA-optimized libraries

Convolutional (depth=16)

Building the images

fatures in long glitches

Data is whitened

Optional contrast stretch

Simulations now available on FigShare

 (b)

0619_CHIRPLIKE

0240_SG

0339_RD

Training the CNN

- **Datasets of 14000 images**
- **Training/validation/test → 70/15/15**
- **Image size 241px x 513px**
- **Reduced the images by a factor 0.55 due to memory constraints**
- **Use validation set to tune hyperparameters**
- **On our hardware, training time ~8 hrs for ~100 epochs**
- **When training is done, classification requires ~1 ms/image (on our configuration)**

Classification Results

We compared classification performances with simpler architectures

Deep 4-blocks CNNs

Classification accuracy

Normalized Confusion Matrix

Deep CNN better at distinguishing similar morphologies

SVM

Deep CNN

Example of classification results

7371 GAUSS spec proc (True: GAUSS, Predicted: GAUSS)

Some cases of more glitches in the time window, always identify the right class

More details in Razzano & Cuoco 2018, CQG,35,9

Real data: O1 run

ICULLE GO OBSERVATION

Dataset from GravitySpy images

Examples of classification

Results

Confusion Matrix (Normalized)

Full CNN stack

Consistent with Zevin+2017

MOWE GO OBSERVATIONAL

TA

CNTS

H2020-ASTERICS project brings together for the first time scientists and communities from astronomy, astrophysics, particle astrophysics & big data. http://www.asterics2020.eu **H2020-Astronomy ESFRI and**

Elena Cuoco (**EGO**) *Scientific Supervisor* Emanuel Marzini, Filip Morawski, Alessandro Petrocelli, Alessandro Staniscia, Silvana Muscella (**Trust-IT**) $\frac{1}{2}$ Trust-IT Services

Research Infrastructure Cluster (Grant Agreement number: 653477).

Why Wavefier

- It would be extremely useful to have an online pipeline for automatic identification and classification of transient signals for Gravitational Wave detectors and their direct database inclusion*.*
- We wanted to setup a protype for a framework where inserting ML pipeline, using new technologies, platform indipendent
- We want to have a system platform indipendent. Made test on cloud system

Wavefier: Key Objectives

- ◎ Setup a prototype for a **real time** pipeline for the detection of transient signals and their **automatic** classification
- ◎ Best practice for **software management**
- ◎ Test different software architecture solutions to prototype a **scalable** pipeline for **big data** analysis in GW context.
- ◎ **Interoperability** and access to data and services
- ◎ **ICT services** supporting research infrastructures
- ◎ Use of **data in network** infrastructures and services
- ◎ Big data and **Machine Learning**
- ◎ Test on **cluster**

Wavefier h hanar-s Real time Gravitational Wave transient signal classifier

What already exists [\(https://wdf.virgo-gw.eu/](https://wdf.virgo-gw.eu/))

\textsf{M} EGO GRAVITATIONAL

Machine Learning pipelines

- We worked on an easy solution: using the **features extracted by WDF** pipeline such as meta parameters (freq, SNR, duration) and wavelet coefficients or reconstructed waveforms
- We developed Machine Learning pipeline based on two different algorithms realizing two types of data analysis:
	- **Classification**
	- **Clusterization**

Both algorithms were trained on artificial data, reach in various glitches and GW signals.

- Trained the moment, the system is deployed.
- The initial architectures have been chosen after several tests as the one reaching the highest performance.
- However the implementation allows for further development via modification of configuration files.

Machine Learning classification

- Classification is realized through
- 1 Dimensional Convolutional Neural Networks (**CNN1d**)
- As an input data, the algorithm uses **reconstructed waveforms** generated by WDF.
- The output is one of 7 labels:
- 6 types of glitches
- GW signal (so called "chirp")

Machine Learning clusterization

Clusterization is realized through **Autoencoders** based on Artificial Neural Networks.

- The algorithm processes the reconstructed waveforms generated by WDF trying to find their hidden (latent) representation.
- The output is a set of parameters describing each signal in latent space (which might help in unsupervised classification).

Architecture overview

Offline data - Architecture

Offline data - Architecture

Dashboard

Offline data - Architecture

Offline data - Architecture

Offline data - Architecture

Apache Kafka

Open-source stream-processing software platform developed by LinkedIn and donated to the Apache Software Foundation

Apache Kafka® is a distributed streaming platform. What exactly does that mean?

A streaming platform has three key capabilities:

◎ Publish and subscribe to streams of records,

similar to a message queue

- ◎ Store streams of records in a fault-tolerant durable way.
- ◎ Process streams of records as they occur.

Kafka is generally used for two broad classes of applications:

- ◎ Building real-time streaming data pipelines that reliably get data
- ◎ Building real-time streaming applications that transform or react to the streams of data

More info on:

<https://kafka.apache.org>

Why grafana

- Useful build-in features
	- Authentication, Organization and user settings

Mixed Datasource, Mix different data sources in the same graph

○ Grafana supports dozens of databases, natively. Mix them together in the same Dashboard.

Native Notification and Alerting

Why InfluxDB?

- Specific for time series database (TSDB) ○ All is designed as time series
- Friendly because InfluxDB have a SQL-like query language for interacting with it
	- Grafana has Native support for InfluxDB

Architecture Deploy

Docker

• Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications.

• Docker take the concept of container and build an ecosystem around it that would simplify its use

Key benefits of Docker Containers

Hardware independent **all as a moving everywhere**

Speed

 \cdot No OS to boot = applications online in seconds

Portability

• Less dependencies between process layers $=$ ability to move between infrastructure

Efficiency

- Less OS overhead
- Improved VM density

Kubernetes (K8s)

was a project spun out of Google as a open source next-gen container scheduler, designed as a loosely coupled collection of components centered around deploying, maintaining, and scaling applications.

84

IIIOJJI EC

Architecture overview

- Kubernets abstracts away the underlying hardware of the nodes and **provides a uniform interface for application**s to be both deployed and consume the shared pool of resources.
- Masters: are responsible at a minimum for running the API Server, scheduler, and cluster controller. They commonly also manage storing cluster state, cloud-provider specific components and other cluster essential services.
- Nodes: Are the 'workers' of a Kubernetes cluster. They run a minimal agent that manages the node itself, and are tasked with executing workloads as designated by the master.

WaveFier running on Kubernetes

Same Software on Local Deployment

Software Management

88

Why defines software management?

- Distributed Team (2 places)
	- Trust-it, EGO
- •

Different expertise

- Physics, Software Engineer and Computer science
- •

One unique target

89

- How we managed the software
	- 1. Version of the software with common rules of release
	- 2. Setup Continuous Integration

3. Create as much automation as possible!

+

Wavefier¹ h hanas Real time Gravitational Way

Automation anContinuous Integration

IIOII EGO GRAVITATIONAL

Automation and CI *on Wavefier*

 \leftarrow

The Documentation is also generated foreach git Commit

Data Management

Offline data vs Online data

Offline data

- ◎ Pick-up interferometer data
- ◎ Store data in files
- ◎ Access to cluster
- ◎ Move data in cluster
	- **Project Goal**

Online data

◎ Receiving data from different sources

> **Process streaming data**

Current Grafana Dashboard with Classification Results

MOWEGO GRAVITATIONAL

Video Demo

\textsf{M} EGO GRAVITATIONAL

CREDITS:

LAPP and CNRS: Giovanni Lamanna, Jayesh Wagh

Trust-IT: Silvana Muscella, Emanuel Marzini, Filip Morawski, Alessandro Petrocelli, Alessandro Staniscia

and

Many thanks to GARR staff for their support: Giuseppe Attardi (coordinator dip. Cloud GARR), **Alberto Colla**, Alex Barchiesi, Claudio Pisa, Fulvio Galeazzi, Roberto di Lallo

EGO GRAY Communicating ICT to markets **ICONNEGO** GRAY

Next step?

- ◎ Move from prototype/development to production
- ◎ Release the global documentation: from installation to user interface.
- ◎ Run Wavefier on cluster with Virgo on line data
- ◎ Investigate the use of much more sophisticated Machine/Deep learning algorithm, using GPU
- ◎ Upload the code in Asterics/Obelics catalogue and move further in ESCAPE project

ASTRONOMY & PARTICLE PHYSICS CLUSTER

Project Coordinator: Giovanni LAMANNA

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

Background

CESCAPE is based on the capacity building of the H2020 ASTERICS cluster of ESFRI projects (in astrophysics and astroparticle physics) addressing Big Data challenges and already succeeding in:

enabling interoperability between the facilities,

- minimising fragmentation,
- encouraging cross-fertilisation and
- developing joint multi-messenger capabilities.

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

> Funded by the European Union's Horizon 2020 - Grant N° 824064

Domain Cluster projects

H2020-INFRAEOSC-04-2018 call

Clusters to ensure the connection of the EFRI RIs with EOSC (and the construction of EOSC)

Expected impact:

- *Improve access to data and tools leading to new insights and innovation*
- *Facilitate access of researchers to data and resources for data driven science.*
- *Create a cross-border open innovation environment.*
- *Rise the efficiency and productivity of researchers through open data services and infrastructures for discovering, accessing, and reusing data.*
- *Foster the establishment of global standards.*
- *Develop synergies and complementarity between involved research infrastructures.*
- *Adopt common approaches to the data management for economies of scale.*

1st RTA workshop-2019, Institut Pascal

ESCAPE work programme

WP1 MIND. Leader: Giovanni Lamanna, LAPP-CNRS

Management and policy.

WP3 OSSR. Leader: Kay Graf, FAU

Support for "scientific software" as a major component of the ESFR-RI "data" to be stored and displayed in EOSC via dedicated community-based catalogues. Implementation of a community-based approach for the continuous development of shared software and for training of researchers and data scientists.

WP4 CEVO. Leader: Mark Allen, CDS-CNRS

Extend FAIR standards, methods, tools of the Virtual Observatory to a broader scientific context; demonstrate EOSC's ability to include existing platforms.

WP5 ESAP. Leader: Michiel van Haarlem, ASTRON-NWO

Implementation of scientific analysis platforms enabling EOSC researchers to organize data collections, analyse them, access ESFRI's software tools, and **provide their own customized workflows**.

WP6 ECO. Leader: Stephen Serjeant, Oxford Open University

Citizen Science, Open Science et Communication

1st RTA workshop-2019, Institut Pascal

E. Cuoco

Funded by the European Union's Horizon 2020 - Grant N° 824064 103

Task 3.4 description

Task 3.4:

Foundation of Competence for Software and Service Innovation (COSSI)

- Lead: Elena Cuoco (EGO)
- Partners: AIP, CNRS- LAPP, NWO-I- CWI, **EGO**, HITS, INFN, OROBIX, UNITOV

Activities and Aims:

- Review and further develop new approaches and developments for data exploitation
- **C** Starting with machine and deep learning
- **C** Establish innovation competence group

Let's play with tutorial on GW classification

Thank you

