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Introduction

Machine Learning (ML) is a topic of increasing prominence in physics

While ML can be useful, I would not suggest using it as a fix-all tool

ML is not always an improvement over what we have now

Even when it is an improvement, sometimes the benefits are outweighed by drawbacks

ML also has its own costs, especially in terms of training time and interpretability

That said, in the right situation, ML can be extremely powerful

ML can be used both within and external to real-time environments

Most “offline” ML developments can be used in real-time, given enough computing power

I will be focusing on online-specific ML developments, and ways to adapt offline to online
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Sources/biases

I am part of the ATLAS collaboration

I will thus be showing mostly ATLAS examples due to familiarity and lack of time

These are only examples - they are not meant to claim that ATLAS did task X first

The concepts from the examples generally apply to other HEP experiments

I have less experience in extrapolating these beyond HEP, but I am happy to discuss

For more diverse results, I encourage you to check out talks from the CERN IML events

IML = the inter-experimental machine learning group, primarily but not only LHC

All standard IML meetings can be found here: indico category link

IML annual workshops can be found here: 2017, 2018, 2019
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

var1
v
a
r2

Background
Signal
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

1. Cut on variable(s) independently

var1
v
a
r2

Background
Signal

Cut
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

1. Cut on variable(s) independently

2. Cut on var1 and var2 simultaneously

var1
v
a
r2

Background
Signal

Cut
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

1. Cut on variable(s) independently

2. Cut on var1 and var2 simultaneously

3. Partition the parameter space and

simultaneously cut multiple times

var1
v
a
r2

Background
Signal
Cut1
Cut2
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

1. Cut on variable(s) independently

2. Cut on var1 and var2 simultaneously

3. Partition the parameter space and

simultaneously cut multiple times

4. Calculate new properties f () and g();

cut simultaneously on them instead

f (var1,var2)

Background
Signal

Cut

g
 (

v
a
r1

,v
a
r2

)
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Introduction to machine learning

Classification example

Typical HEP use case:

separating signal and background events

Two discriminating variables available

What can we do?

1. Cut on variable(s) independently

2. Cut on var1 and var2 simultaneously

3. Partition the parameter space and

simultaneously cut multiple times

4. Calculate new properties f () and g();

cut simultaneously on them instead

As a rough conceptual analogy:

#3 ∼ Boosted Decision Trees (BDTs)

#4 ∼ Neural Networks (NNs)
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Introduction to machine learning

Classification example, BDT perspective
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Introduction to machine learning

Classification example, BDT perspective

var1

v
a
r2

Background
Signal

E

F
D

var2 > D

var1 > E

var2 > F

var* > ...

Signal

Signal

Signal

true

true

true

AND

false

false

false

Background
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Introduction to machine learning

Classification example, BDT perspective
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In this simple example, the two decision

trees could be combined into one tree

In reality, it is not so easy to cleanly

separate signal and background
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Introduction to machine learning

Classification example, BDT perspective

In reality, partitions are not perfect

Background is non-zero in signal region

Want a non-negligible amount of signal

=⇒ need to keep some background

Each tree has a misclassification rate

Define final discriminant as

combination of individual trees,

weighted by misclassification rates

Not actual fraction of events, rather

the “loss function” used in training

Discriminant = c1 · DT1 + c2 · DT2 + ...
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Introduction to machine learning

Classification example, NN perspective

N1 = f (var1,var2)

Background
Signal
N3 Cut

N
2
 =

 g
 (

v
a
r1

,v
a
r2

)

Neural networks are a bit more complex

Cut on convolved input combinations

In analogy to the past example:

Nodes N1 and N2 are f () and g()

Cut on N3; convolution of f () and g()

var1

var2
out

N1

N2

N3
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Introduction to machine learning

Classification example, NN perspective

How this works (in very brief):

Nodes 1 and 2:

Inputs: {var1, var2}, {var1, var2}
Parameters: {c1, c2, b1}, {d1, d2, b2}
Activation: ReLU, for non-linearity

N1 = max(0, c1 · var1 + c2 · var2 + b1)

N2 = max(0, d1 · var1 + d2 · var2 + b2)

Node 3 (the final discriminant):

Inputs: N1 and N2

Parameters: a1, a2, b3

Activation: Sigmoid, for a probability

N3 = 1
/[

1 + e−(a1·N1+a2·N2+b3)
]

var1

var2
out

N1

N2

N3

ReLU
(Rectified Linear Unit)
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0
0

1
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0
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Steven Schramm (Université de Genève) Machine learning and real-time analysis July 16, 2019 16 / 53



Introduction to machine learning

Classification example, NN perspective

The last slide was a bit simplistic

This is slightly more realistic

Layers 1 and 2 are “hidden layers”

Hidden = neither inputs nor outputs

If there are at least two hidden layers,

then the network is “deep”; a DNN

Output layer could have multiple nodes

One output = binary discriminant

(signal vs background)

2+ outputs = multi-class discriminant

(signal vs BG1 vs BG2 or similar)

var1
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out

ReLU
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Layer 1 Layer 2 Output
Layer
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Introduction to machine learning

Classification example, summary

This example gives a very rough idea of how BDT and NN classifiers work

BDTs construct a “forest” of decision trees to partition the parameter space into signal- and

background-dominated regions, where the trees are weighted for optimal discrimination

NNs form non-linear combinations of the inputs and convolutions thereof to define a cut in a

new parameter space, which it finds to provide optimal discrimination

BDTs and NNs are nowhere near the only ML classifiers that are available

They are just the most prominently used types in HEP

Classifiers are also not the only application of ML

They are just the easiest to motivate in such a context
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Introduction to machine learning

What all is ML used for in HEP?

The most prominent examples of ML usage in HEP are:

Anomaly detection: identifying outliers which are not consistent with the bulk of the data

Classification: telling signal and background apart

Clustering: determine related groups within the data with similar features

Generation: creating artificial data which is ideally consistent with real data

Regression: calibration and similar uses to correct the value of a quantity of interest

Apologies to anyone whose favourite use case is not listed

We will be going through examples of many of these in the context of real-time analysis
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Real-time analysis strategies and constraints

Overview

Introduction to machine learning

Real-time analysis strategies and constraints

Real-time analysis machine learning applications

Summary
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Real-time analysis strategies and constraints

Real-time analysis strategies

Traditionally speaking, real-time computing implies two constraints

1. The response to inputs is guaranteed to occur within a given time period

2. The response to inputs is sufficiently fast to react to them before the inputs change

Strictly speaking, only hardware programs (FPGAs or similar) can fulfill constraint #1

However, software programs can be effectively real-time if the typical response time is

sufficiently low for #2 and any outliers can be handled in a non-disruptive manner

There are two primary HEP use cases that I will discuss, and which I may differentiate
1. Triggering: reacting = deciding whether to keep or reject events

Must occur before any buffer overfills, otherwise write it out anyway (non-disruptive failure)

2. PEB: reacting = calculating the information that we want to use later in analysis

Must occur before any buffer overfills, otherwise potentially disruptive failure (?)

PEB = Partial Event Building, used for DataScouting / TriggerLevelAnalysis / TurboStream
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Real-time analysis strategies and constraints

Triggering

A typical trigger workflow (some steps may be skipped depending on the trigger):

Step 1: read-out the detector in very coarse granularity for every LHC collision

Step 2: identify potentially interesting regions using simple hardware algorithms

Step 3: if the simple algorithms say the event is interesting, pass to the software

Step 4: read out the region(s) previously indicated as interesting with fine granularity

Step 5: reconstruct the object(s) with higher precision and decide if the event is interesting

Step 6: read out a larger portion of the detector or full detector with fine granularity

Step 7: reconstruct the object(s) with very high precision and decide if the event is interesting

Step 8: write the interesting event to disk for long-term storage

Note that LHCb is changing this workflow for Run 3 as the hardware level is disappearing

Triggering by definition is a form of classification - identify interesting events

ML therefore has some obvious applications to potentially improving this classification

Beyond classification, the above list also has clear links to clustering, regression, and more
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Real-time analysis strategies and constraints

Triggering vs partial event building

Triggering is by its nature a choice of what is interesting

Ask a room full of physicists which events are interesting and you’ll get very different answers

If we could, we would just record every single event, and most of them would be used

The reality is that we can’t record everything due to computing limitations

We can only write out so much data per second (bandwidth)

We can only store a given amount of data for a long period of time (disk resources)

What we store is typically limited by the bandwidth, where bandwidth = size× rate

=⇒ If we can reduce the event size, we can increase the rate and thus store more events

This is the principle of PEB: only reconstruct and record part of the event
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Real-time analysis strategies and constraints

Partial event building for analysis

There are different levels of information storage, including three major steps

1. Store the full event (normal “offline” strategy)

2. Store the information needed to reconstruct all objects of interest (regional read-out)

3. Store only the objects and key information needed for the final analysis

PEB can also be run either parasitically or actively

Parasitic = read-out and reconstruction already done for other triggers (∼no CPU cost)

Active = using extra CPU to read-out the detector and reconstruct events

Very important to keep this in mind if considering PEB-specific ML uses

PEB analyses are typically very high rate =⇒ calling the code a lot

This may result in very high CPU cost, which may make it so the PEB analysis is not possible

For active PEB analysis, need to be careful about what to do if time runs out

If you didn’t calculate all desired information, by definition you can’t write it out

Perhaps fall-back to writing the full event to a different output stream and recover it offline?
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Real-time analysis strategies and constraints

Real-time analysis constraints

Before discussing where ML can help, need to understand real-time analysis constraints

When talking about a given task, considerations include:

Dependencies: what has to happen before the task can run

Environment: what environment the task must run in

Hardware environment: FPGAs, GPUs, CPUs, etc

If CPU-based, execution environment: single-threaded, MP, MT, etc

If software-based: Whether the computing farm is homogeneous or heterogeneous

If software-based: CPU power, memory limits, CPU↔GPU transfer speed, etc

Latency: amount of time it takes to complete the task

Performance: how close the result is to the optimal result given “infinite” time

Reactivity: ability to quickly identify when something has gone wrong and fix it

Storage: amount of space it takes to “permanently” store the result
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Real-time analysis machine learning applications

Overview

Introduction to machine learning

Real-time analysis strategies and constraints

Real-time analysis machine learning applications

Summary
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Real-time analysis machine learning applications

Potential ML applications

As discussed in the last section, there are many constraints in real-time systems

Whether or not a given approach is possible will depend on these constraints

For the most part, I will be focusing on software real-time analysis

There will be a tutorial on hls4ml later today which will cover hardware ML applications

I will also be focusing on concepts rather than specifics

Topics will generally fall into four categories:

1. Classical uses of ML (very brief)

2. Addressing differences between real-time and offline environments

3. Anomaly and novelty detection

4. Reducing computing costs
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Real-time analysis machine learning applications Classical uses of ML

Classical uses of ML Both: b-jet trigger plots

The primary use of ML in real-time environments so far has been classification

b-jet, electron, and photon identification are common examples

This works well, but offline identification is a constantly moving target

This means that trigger ID is always out of date

Offline changes impact PEB less, but still impact uncertainties if adapting from offline
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Real-time analysis machine learning applications Classical uses of ML

Implications of a moving reference

ML is a powerful tool for identification, and is used both online and offline

Lots of developments in ML classification, can be used in both environments

CNNs, RNNs, and much more are increasingly used for improved identification

Not the focus of this talk, which is about adapting ML for trigger

However, we just saw an example of how the offline target is constantly evolving

In the context of identification for triggering, implications include:

Wasted rate, as some of the events recorded will not be used offline

Missed events, as some of the events desired offline were not recorded

Increased work-load, to calculate trigger-vs-offline efficiency scale factors

Duplicated work, as the trigger tries to replicate offline studies to catch up for the next year

Moreover, identification is not the only stage in triggering

After identifying an object, typically you apply a kinematic selection
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Real-time analysis machine learning applications Classical uses of ML

Moving references and kinematic selections

Differences in object kinematics are typically shown as “turn-on curves”
Ideally, online = offline, then we have a step function

In reality, there is a resolution difference, which leads to the characteristic shape

As before, these differences can waste a lot of rate and increase the work-load
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Real-time analysis machine learning applications Classical uses of ML

Kinematic selections example Both: Jet trigger plots

This is clear in jet trigger turn-ons (note: no ML here, just as an example)

Bringing jet definition and calibration closer to offline leads to sharper turn-ons

However, offline target is constantly moving, as for b-jet identification

Can ML help us reduce the impact of online/offline differences?
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Real-time analysis machine learning applications Addressing online/offline differences

Addressing online/offline differences

Can ML help us to address such online/offline differences?

Yes, and in fact a lot of work is in this area in a different context

Major critique of ML in physics: potential to learn simulation features

Large effort has thus been invested in ensuring ML does not learn specific features

Trigger can benefit: online vs offline instead of simulation vs data

There are also other areas that are not as relevant to offline analysis
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Real-time analysis machine learning applications Addressing online/offline differences

Adversarial training Schematic: PUB-2018-014

Adversarial NNs are one way to intentionally not learn a given set of properties

Idea: put two networks in competition, the classifier and adversary

Classifier tries to reject background, while adversary tries to predict the properties in question

If the adversary can predict the properties from the classifier output, there is a correlation

Continue to train until balanced: classification without learning the specific properties

Choosing values of λ allows for prioritizing classification, decorrelation, or balance
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Real-time analysis machine learning applications Addressing online/offline differences

Comparison of decorrelation strategies Plot: PUB-2018-014

Adversarial networks are only one

decorrelation strategy

Study of single-variable decorrelations

Adversarial networks (NN)

Uniform boosting (BDT)

k-nearest neighbours

Two other application-specific options

ANN worked the best overall
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Real-time analysis machine learning applications Addressing online/offline differences

Decorrelation strategies and the trigger

Why is such a decorrelation strategy useful in the trigger?

1. Designing triggers decorrelated with respect to given properties (resonance mass, etc)

2. You know a given variable does not agree well online/offline and is correlated to variables you

want to use in your trigger classifier, so train the classifier to not learn that feature

3. Train the classifier on a mixture of online and offline events and use an adversary to ensure

the classifier cannot tell the difference between online and offline events

In other words, decorrelate with respect to the input type label

Similar can be done for a data/simulation mixture control region and not learn differences

Note: this will degrade performance (you are intentionally discarding information)

Make sure to balance decorrelation with performance as needed

Note: similar can be done by training a classifier on the latent space of an autoencoder
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Real-time analysis machine learning applications Addressing online/offline differences

Regressions and online/offline differences

Adversaries and similar are helpful for identification tasks in the trigger

Kinematic selections are also very important, where resolution differences are crucial

As before, ∼50% of recorded events may not be used due to resolution differences

How can we reduce online/offline resolution differences?

Regressions are one key ML tool for such cases
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Real-time analysis machine learning applications Addressing online/offline differences

Regressions for resolution Plot: CONF-2017-029

Regressions are essentially advanced ML

calibration strategies

Rather than calibrating an object with

a few inputs, use many variables

Exploit variable correlations

Train the regression to predict the

desired quantity (four-vector)

Loss function: can focus on mean

(scale), variance (resolution), or other

Offline example: huge resolution gains

when using a regression for τ calibration
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Real-time analysis machine learning applications Addressing online/offline differences

Regressions for online/offline resolution

Regressions are excellent for reducing online/offline differences

Can fully exploit the correlations between many variables

Can be given online inputs and trained to predict offline four-vector (not truth)

Can be trained to prioritize scale, resolution, or somewhere in between

For trigger, resolution is generally more important

For PEB, scale may be more important, and reference (truth or offline) depends on use case

Lots of opportunities to use regressions in real-time analysis

However, still very susceptible to the changing offline reference challenge

Can try to combine with ANN/similar to train one regression that works for online and offline
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Real-time analysis machine learning applications Addressing online/offline differences

Regressions for calibration at Level-1 Plot: PUB-2017-017

Regressions can be run on a variety of
inputs, not just object properties

For example, they can be run on

images (convolutional NNs)

This can be very useful at Level-1

Insufficient time to calculate features

Coarse readout is fine for CNN

(readout size defines pixel size)

Designed well, CNNs can run on L1

(I expect hls4ml will show L1 CNNs)

Result: hopefully much improved L1
resolution (and much faster L1 turn-ons)

Maybe supports 40MHz PEB analysis?
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Anomaly and novelty detection

We’re now moving to a more exotic topic, which has recently exploded in popularity

Premise: what if our analyses and triggers are looking in the wrong place for new physics?

Entirely possible - we are generally looking for what we expect, not something crazy

Potential solution: use ML to directly search for the unexpected

This is traditionally known as anomaly detection, as you are looking for outliers

Sometimes also referred to as novelty detection - the detection of something new

There are lots of ways to do this, with differing levels of generality

We had to hold two back-to-back IML meetings on this topic to cover all requests: #1, #2

Steven Schramm (Université de Genève) Machine learning and real-time analysis July 16, 2019 40 / 53

https://indico.cern.ch/event/752376/
https://indico.cern.ch/event/763868/


Real-time analysis machine learning applications Anomaly and novelty detection

A more specific strategy Schematic: arXiv:1808.08992

Let’s focus on jets as a generic object leaving energy in the calorimeter

Train an autoencoder on a sample of background (QCD) jets

An autoencoder “learns” the identity matrix, with some noise

The output of an autoencoder should thus be the same object

If the autoencoder gets something it doesn’t expect, the object will change

(it hasn’t learned the identity matrix for that type of object)
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Searching for anomalous jets Plot: arXiv:1808.08992

Autoencoder was trained on QCD jets

QCD jets are thus reconstructed

similarly (low reconstruction error)

Both hadronic top quark decays and

gluinos show up as anomolous jet types

This principle can be expanded

Train on all known jet types

Will encounter beam background, etc

Continue to expand autoencoder to

reach non-background anomalous jets

Then start triggering on anomalies

Could identify long-lived particles, etc

10 7 10 6 10 5 10 4

Reconstruction Error

0.0

0.2

0.4

0.6

0.8

1.0

QCD
t

g (400 GeV)
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A more general strategy Plot: arXiv:1811.10276

Again, use a variational autoencoder

Uses 21 high-level features as inputs

Train on a mixture of dominant SM

processes: QCD, W, Z, and tt̄

Test on a few signal samples

Significant SM rejection with reasonable

signal acceptance, despite never having

seen the signals during training

This is going in the direction of a

generic anomaly detection trigger

Would be curious to see how this looks

in data (detector features, etc)
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General thoughts on anomaly and novelty detection

These strategies are very interesting for the future

Give us the chance to look for the unexpected, without restricting to a specific model

Triggers based around such algorithms may indicate the presence of new physics

However, these are also long-term endeavours

You will start by discovering detector features, beam background, etc

Only after a lot of work will you get to actual exotic events (SM-generated or otherwise)

Note that such strategies are also useful for monitoring

In this case, the detector features and similar would be what you are looking for

Watch for changes that would indicate new detector problems or similar
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Reducing the computing costs of ML at run-time

After deciding that ML is useful for a given application, that is just the start

You then have to implement the ML technique and demonstrate it works

You also need to make sure that it will run within the computing resource constraints

ML algorithms are notoriously expensive to train, but they can also be expensive to run

BDTs and NNs both require very large amounts of floating point operations

CPUs have some FPUs, but really they excel at integer arithmetic

Large ML models can also take up a sizable amount of memory

Training an ML algorithm is essentially fitting a large number of floating point parameters

Depending on the size of the model, it may start to hit memory limitations

How can we address these challenges to make ML more real-time friendly?
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Reminder of NN structure

Number of parameters scales very

quickly with the model size

Npar controls both memory and speed

How many parameters is this model?

Nodes: one per input, +1 for offset

Layer 1: 3 parameters per node

Layer 2: 6 parameters per node

Output layer: four parameters

Total: 37 floating-point parameters

Generic:

layers∑
i=1..L

N i
nodes · (N i−1

nodes + 1)

Npar ∈ O

(
Nlayers ·

[
max
layers

(Nnodes)

]2
)

var1

var2

out

ReLU
Sigmoid

N6

N7

N8

N9

N1

N2

N3

N4

N5

Layer 1 Layer 2 Output
Layer

Input
Layer
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So how can we reduce computing requirements?

Reminder: model evaluation speed and size are related to the number of parameters

How can we make this more efficient?

1. Run on hardware that is designed for floating point operations

2. Reduce the number of layers or the number of nodes (less parameters)

3. Compress the parameters themselves - move away from floating-point values

Option #1 may or may not be feasible, depending on the environment

Not everyone has GPUs, and if they exist they may or may not be sufficient

Note that GPUs are not a magic solution - still requires CPU↔GPU transfer

Options #2 and #3 may be needed in some cases

These are both powerful approaches with their own benefits and consequences

In both cases, the precision will be impacted, but typically it is a small loss
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Reducing the model complexity Plot: S. Benson @ IML2018

One option: train a compressed network

to learn the output of a large network

Compressed network doesn’t see truth

labels, just sees what original network

says for a given set of inputs

Compressed network has fewer nodes

Faster to evaluate

Less to keep in memory

Performance depends on many factors

However, often can reduce complexity

quite a bit, keeping similar performance

Original
Reduced complexity
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Discretizing the inputs Plot: LHCb

Another option: discretize the inputs

Normally inputs are floats/doubles

Discretize to integers (bins)

Large size reduction

Also converts BDT into a lookup table

Comes with a loss of performance

However, in real use, not as bad as plot

Used extensively by LHCb in Run 2

This is the “Bonsai BDT”
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Ternary weights Talk: T. Genewein @ IML2019

We can directly compress weights from floats (32 bit) to ternary (2+ bit)

Ternary weights (−r , 0,+r) reduce space considerably

With combined ternary weights and pruning (dropping low-importance nodes, not shown)

found identical performance to full floating point, but with significantly smaller sizes

Generally a powerful means of reducing network size and parameters

Steven Schramm (Université de Genève) Machine learning and real-time analysis July 16, 2019 50 / 53

https://indico.cern.ch/event/766872/contributions/3287971/


Real-time analysis machine learning applications Reducing computing costs

ML for faster reconstruction

Of course, ML algorithms are not always slower than non-ML code

Huge effort into tracking with ML, especially for the TrackML challenge

Recent two-day summary event: indico link

As such, ML can also be considered to speed up very combinatorically complex tasks

Recall that ML is actually an approximate solution, not analytic

It can therefore be much faster - just need to make sure it is suitably performant

Could be used in future trigger for reconstruction

Tracking at HL-LHC likely to benefit from ML-inspired designs
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Summary

This was my perspective of ML topics that may be relevant to real-time analysis

I covered four main categories:

Traditional uses of ML (object identification and classification)

Addressing differences between real-time and offline environments

Anomaly and novelty detection

Reducing computing costs and constraints

This is by no means an exhaustive list, and I certainly missed topics

I would say that we are currently in a very fortunate position

There has been a lot of ML development for offline HEP usage

It is now up to us to think about how we can benefit in the real-time environment
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