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๏Autoencoders are networks 
with a typical “bottleneck” 
structure, with a symmetric 
structure around it

๏They go from ℝn ➝ ℝn 

๏They are used to learn the 
identity function as 𝑓-1(𝑓(x))

where 𝑓: ℝn ➝ ℝk and 𝑓-1: ℝk ➝ 
ℝn

๏Autoencoders are essential 
tools for unsupervised studies

Autoencoders
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Latent 
space



๏Autoencoders can be seen as compression algorithms

๏The n inputs are reduced to k quantities by the encoder

๏Through the decoder, the input can be reconstructed from the k quantities

๏As a compression algorithm, an auto encoder allows to save (n-k)/n of the space normally occupied by 
the input dataset

Dimensional Reduction
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๏The auto encoder can be 
used as a clustering 
algorithm

๏Alike inputs tend to 
populate the same region 
of the latent space

๏Different inputs tend to be 
far away

Clustering
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๏AEs are training minimizing the 
distance between the inputs and 
the corresponding outputs

๏The loss function represents 
some distance metric between 
the two

๏e.g., MSE loss 

๏A minimal distance guarantees 
that the latent representation + 
decoder is enough to 
reconstruct the input information

Training an Autoencoder
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10 epoch

42 epoch 
(reached early 

stopping)

1 epoch



๏Once trained, an autoencoder 
can reproduce new inputs of the 
same kind of the training dataset

๏The distance between the input 
and the output will be small

๏ If presented an event of some 
new kind (anomaly), the 
encoding-decoding will tend to fail

๏ In this circumstance, the loss 
(=distance between input and 
output) will be bigger

Anomaly detection
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๏Conv Autoencoders take 
images as input

๏Through Conv and 
MaxPooling, they reduce 
it to some latent-space 1D 
array

๏This 1D array is expanded 
using the inverse of the 
encoder functions

๏ConvTranspose (aka 
“Deconvolution”)

๏Upsampling

Convolutional Autoencoders
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

๏ Idea applied to tagging jets, in order 
to define a QCD-jet veto

๏Applied in a BSM search (e.g., dijet 
resonance) could highlight new 
physics signal

๏Based on image and physics-
inspired representations of jets 

 

Example: Jet autoencoders

�8

Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct
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๏When given as input a sequence, the AE needs a recurrent layer to process it

๏The encoder is similar to the classifier we already saw

๏What about the decoder? This is where the serial output of the RNN comes in

Recurrent Autoencoders
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Variational Autoencoders



๏We investigated variational 
autoencoders 

๏Unlike traditional AEs, VAEs try to 
associate a multi-Dim pdf to a 
given image

๏can be used to generate new 
examples

๏comes with a probabilistic 
description of the input

๏ tends to work better than 
traditional AEs

Variational Autoencoders

�11



๏Loss function described as the sum 
of two terms (scaled by a tuned λ 
parameter that makes the two 
contribution numerically similar)

๏Reconstruction loss (e.g. 
MSE(output-input))

๏KL loss: distance between 
Gaussian pdfs (assumption on 
prior here)

๏Why Gaussian? KL loss can be 
written analytically

The Loss Function
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is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
1

2
(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:

LossTot = Lossreco + �DKL , (6)
where � is a free parameter, set to 0.3 in this work. The prior chosen for the latent space is a 4-dim
Gaussian with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the covariance
matrix (�P ) are free parameters of the algorithm and are optimized during the back-propagation. The
Kullback-Leibler divergence between two Gaussian distribution has an analytic form. Hence, for
each batch, DKL can be expressed as:
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where k is the batch size, i runs over the samples and j over the latent space dimensions. Similarly,
Lossreco is the average likelihood of the inputs given the predicted ↵ values:

Lossreco = �1
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where j runs over the input space dimensions, fj is the functional form chose to describe the pdf of
the j-th input space variable and ↵i,j

m
are the parameter of the function. Different functional forms

have been chose for fj , to properly describe different classes of HLF distributions:

• Clipped Log-normal + � function: used to describe ST , MJ , pµ
T

, Mµ, pe
T

, Me, isolated-
lepton pT , ChPFIso, NeuPFIso and GammaPFIso:

P (x | ↵1,↵2,↵3) =
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• Gaussian: used for pmiss
T,k and pmiss
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• Truncated Gaussian: a Gaussian truncated for negative values and normalized to unit area
for X > 0. Used to model MT :
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• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to be evaluated

on integers (i.e.
1X

n=0

P (n) = 1). This function is used to describe Nµ, Ne, Nb and NJ . It is

written as:

P (n | ↵1,↵2) = ⇥(x)
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where the normalization factor N is set to:
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are activated by the functions:

p-ISRLu(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
x

p
1 + x2

. (4.1)

This activation allows to improve the training stability, being strictly positive defined, non
linear, and with no exponentially growing term (which might have created instabilities in
the early epochs of the training). The four nodes of this layer are interpreted as the �z
parameters of p(z). After several trials, the dimension of the latent space has been set
to 4 in order to keep a good training stability without impacting the VAE performances.
The decoding step originates from a point in the latent space, sampled according to the
predicted pdf (green oval in Fig. 3). The coordinates of this point in the latent space are
fed into a sequence of two hidden dense layers, each consisting of 50 neurons with ReLU
activation functions. The last of these layers is connected to three dense layers of 21, 17,
and 10 neurons, activated by linear, p-ISRLu and clipped-tanh functions, respectively. The
clipped-tanh function if written as:

Ctanh(x) =
1

2
(1 + 0.999 · tanhx) . (4.2)

Given the latent-space representation, the 48 output nodes represent the parameters of the
pdfs describing the input HLF probability, i.e., the ↵ parameters of Eq.(4.5).

The total VAE loss function LossTot is a weighted sum of two pieces [35]: a term re-
lated to the reconstruction likelihood (Lossreco) and the Kullback-Leibler divergence (DKL)
between the latent space pdf and the prior:

LossTot = Lossreco + �DKL , (4.3)

where � is a free parameter. We fix � = 0.3, for which we obtained good reconstruction
performances.4 The prior p(z) chosen for the latent space is a four-dimension Gaussian
with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the co-
variance matrix (�P ) are free parameters of the algorithm and are optimized during the
back-propagation. The Kullback-Leibler divergence between two Gaussian distributions has
an analytic form. Hence, for each batch, DKL can be expressed as:
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1
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where k is the batch size, i runs over the samples and j over the latent space dimensions.
Similarly, Lossreco is the average negative-log-likelihood of the inputs given the predicted ↵

values:

Lossreco = �
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4
Following Ref. [35], we tried to increase the value of � up to 4 without observing a substantial difference

in performance.
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Clustering with VAE
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๏ In the clustering example, the 
different populations are forced on 
sums of Gaussian distributions

๏This gives more regular shape for 
the clusters



๏Now that we have a probabilistic description of the latent space, we can sample points from it

๏These points, propagated through the decoder, will provide new examples

๏We have defined a generative model

A Generative model
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More effective with sequential data
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Recent successes: Text generation

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017



More effective with sequential data
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Recent successes: Audio generation

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

reconstruction generation



More effective with sequential dataRecent successes: Drug discovery

Gómez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01925.



๏Autoencoders are NNs for unsupervised problems

๏Clustering

๏Dimensional reduction

๏Anomaly detection

๏When adding variational functionality

๏Can be used as generators

๏Can improve robustness (e.g., anomaly detection performance)

๏Could be relevant to reduce model dependence in searches for new physics at the 
LHC

Summary
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Backup



๏When taking data, >1 person watches for 
anomalies in the detector 24/7

๏At this stage no global processing of the event

๏ Instead, local information from detector 
components available (e.g., detector 
occupancy in a certain time window)

Example: Data Quality Monitoring

�20
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A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The chamber
shown in (B) su↵ers of a region of layer 1 with lower e�ciency,
which should be identified as anomalous. The plot in figure
(C) instead shows regions of low occupancy across the 12
layers and should also classified as faulty. According to the
run log, this e↵ect was induced by a transient problem with
the detector electronic.

use of layer by layer one dimensional linear interpo-
lation to match the size of the smallest layer s in
dataset, where ↵ is an interpolation point:

↵ = j
ni

ns

x̃i,j = frac(↵)(xi,b↵c+1 � xi,b↵c) + xi,b↵c

– smoothing: according to CMS DT experts, misbe-
having channels are problematic only when a cluster
of them, spatially contiguous, is observed. Instead,
isolated misbehaving channels are not considered a
problem. To account for this caveat the one dimen-
sional median filter was applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– normalization: the occupancy of the chambers in the
input dataset depends on the integration time and
on the LHC beam configuration and intensity i.e.
on the number of LS spanned when creating the
image and corresponding luminosity. The normal-
ization strategy depends on the need of comparing
data across chambers or across runs: the precise pro-
cedure used in the two approaches is described in
Sections 4 and 6 respectively.

A

B

Fig. 5 Example of two kinds of input sample preprocesing.
(A) reshaping each layer directly from acquired (raw) values
using linear interpolation. (B) smoothing the raw data with
median filter before reshaping. The isolated low-occupancy
spot in layer 1, corresponding to a dead channel, is discarded.

3 Machine learning for DQM Anomaly

Detection

Machine learning techniques present several advantages
over the currently adopted procedure. The high data
dimensionality precludes simple parametric density es-
timation of the normal behavior; and statistical testing
is not su�cient, as faulty data must be singled out.
This leaves us with an extremely wide range of meth-
ods, that we will briefly discuss here in the light of both
the operational condition and the a priori knowledge of
the data (for a general survey see [5]).

Anomaly detection techniques usually make at least
one of the two following assumptions: rarity of abnor-
mal events, which are considered outliers with respect
to the normal generating process; and/or partial or
complete lack of representative examples of all type
of behaviors. If such representative examples are avail-
able, anomaly detection reduces to binary classification
(supervised learning), with possibly the help of various
resampling methods [6] or reformulation of the objec-
tive function [7] for dealing with class imbalance. In our
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Fig. 2 View on wheel positioning in the detector.

Fig. 3 Numbering schema of the Drift Tube sectors and sta-
tions.

CMS data are organized in acquisition runs (or just
runs in CMS jargon), corresponding to homogeneous
conditions both of the CMS detector and of LHC ac-
celerator. Runs are denoted as integers, with increasing
numbering along time. Their duration is varying from
as little as few seconds to as much as several hours.

Each of them is divided into luminosity sections
(LSs), a time interval corresponding to a fixed beam or-
bits in the LHC and amounting to approximately 23 s.
LSs are numbered progressively from 1 at the start of
each run. A single LS can be identified univocally by
specifying the LS number and the run number.

Runs are grouped together when corresponding to
the same fill, i.e. the time interval between two proton
injections into the LHC. A fill can last for as much as
tens of hours. During the fill, the number of protons in
the beam reduces, due to proton collisions happening
at four interaction points along the ring. As a result of
that, the beam intensity (also referred as luminosity)

decreases along the fill as well as the absolute number
of events.

For each chamber k and each run, the current DQM
infrastructure, [4], records an occupancy plot matrix Ck,
which is the total number of electronic hits at each read-
out channel. The occupancy plot matrix can be viewed
as a varying size two-dimensional array organized along
layer (row) and channel (column) indexes:

Ck = {xk
i,j ; 1  i  l, 0  j < ni},

where l = 12 is the number of layers and ni is the
number of channels in layer i. Formally we should index
the chambers and their components e.g. Ck and xk

i,j but
wherever the discussion concerns a single chamber, we
drop the k index for clarity until Section 6. Figure 4
shows examples of occupancy plot matrices.

In this work we look for an algorithm that identi-
fies faulty chambers. Only data collected during LHC
collision runs, and acquired during year 2016 and 2017
have been used in this study. The dataset is composed
of 21000 chamber samples collected during 84 runs. We
consider two complementary approaches to the prob-
lem:

– Local approach: data collected in each layer is treated
independently from the other layers. The domain
experts regard chambers which have occupancy of
the hits with small variance between neighboring
readout channels as expected behavior. Chambers
which have dead, ine�cient or noisy regions, are
considered problematic, (see figure 4 for reference).
We explore this approach in Section 4.

– Extended local approach: data collected in each cham-
ber is treated independently from the other cham-
bers. We extend the local approach to account for
failures spotted only when the information about all
layers within one chamber is present. We exploit this
approach in the algorithm described in Section 6.

– Global approach: we use the information of all the
chambers for a given run. The geographical infor-
mation in the CMS detector (wheel, station or sec-
tor) impacts the occupancy distribution of the chan-
nel hits. We exploit this information in the test de-
scribed in Section 7.

Regardless of the strategy, the data need to be pre-
processed. Three steps are performed (for visual inter-
pretation, see figure 5):

– standardization of the chamber data: the number of
readout channels in a layer (corresponding to one
row of channels in a muon chamber) varies not only
within the chamber but also depends on the cham-
ber position in the detector. This quantity falls be-
tween 47 and 96. In order to have fixed input di-
mensionality, the matrices were composed with the

 Pol, G. Cerminara, C. Germain, MP and 
A. Seth arXiv:1808.00911

https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911


๏Given the nature of these data, 
ConvNN are a natural analysis tool. 
Two approaches pursued

๏Classify good vs bad data. Works 
if failure mode is known

๏Use autoencoders to assess data 
“typicality”. Generalises to 
unknown failure modes 

Example: Data Quality Monitoring

�21
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This choice scaled the original 21000 chambers to 228480
samples.

Hit counts in a layer are normalized to a [0, 1] range,
dividing them by the maximum of the absolute occu-
pancy value in the layer:

zi,j =
x̃i,j

max(Xi)
,

The need for normalization comes form the intrinsic
variation of the occupancy depending on the spatial
position of the chamber, that will be described in more
details later (Section 6).

The primary goal of this first experiment is to eval-
uate the potential of the various flavors of Machine
Learning methods. We compare:

– supervised learning, with a) a fully connected neu-
ral network (DNN), and b) a convolutional neural
network (CNN), [16];

– semi-supervised learning, with a) Isolation Forest,
and b) µ-SVM.

– unsupervised with a) a simple statistical indicator,
the variance within the layer, and b) an image pro-
cessing technique, the maximum value of the vector
obtained by the application of a variant of an edge
detection Sobel filter [17]: Si = max(

⇥
�1 0 1

⇤
⇤Xi).

The ground truth has been established on a ran-
dom subset of the dataset, by visually inspecting the
input sample before any processing: 5668 layers have
been labeled as good and 612 as bad. The 9,75% fault
rate is representative of the real situation. With this ra-
tio, both anomaly and outlier detection approach can
be considered. Out of this sample 1134 of good and
123 of bad, corresponding to 20% of the labeled layers,
were reserved to compose the test set. The rest of the
samples were used for training and validation for the
semi-supervised and supervised methods.

The Isolation Forest and µ-SVM were cross-validated
using five consecutive, stratified dataset folds to search
for their corresponding optimal hyper-parameters. Sub-
sequently, the Isolation Forest was retrained using those
hyper-parameters on the full unlabeled dataset, while
µ-SVM was retrained using only negative class.

The architecture of the CNN model with one di-
mensional convolution layers used for this problem is
shown in figure 6. The hidden layers use rectified lin-
ear unit as activation while the final output layer uses
softmax function. We have not applied smoothing pre-
processing step, described in Section 2, allowing the
model to learn its filters. CNN [16] was trained us-
ing Adam [18] optimizer and early stopping mechanism
with patience set to 32 epochs. The model was imple-
mented in Keras [19], using TensorFlow [20] backend.

Fig. 6 Convolutional Neural Network model architecture
used to target local strategy.

Additionally we have weighted our samples to account
for class imbalance. The weight � for a sample in class
 2 {0, 1} is equal to:

� =
|S|

2 · |S |

S = S0 [ S1

The DNN was primary used to benchmark the con-
volution kernels. Similarly to CNN it has one hidden
fully-connected layer with 8 units using rectified linear
unit as activation and a softmax function on the output
layer.

5 Detecting unusual behavior within a chamber

5.1 Motivation

This section presents an experiment focusing on the
extended local approach based on the assumption that
the occupancy pattern within a chamber depends on
the layer information. This strategy aims, for example,
at detecting voltage related problems when a hit oc-
cupancy decreases uniformly in a specific part of the
subdetector e.g. a layer or a group of layers.

5.2 Dataset and methods

As a preliminary step, the chamber occupancy data
in the input dataset were evaluated by the convolu-
tional model presented in Section 4. All chambers with
any layer labeled as faulty were discarded from train-
ing. For simplicity, due to a lack of the middle group
of four layers, chambers located in station 4 were dis-
carded as well. The above changes e↵ectively narrowed
the training dataset to 8452 matrices. The samples were
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A

B

Fig. 7 Example of impact of layer voltage on hit counting.
(A) Operating at 3200 V. (B) Operating at 3450 V. Both
examples should be regarded as anomalies.

composed by concatenating smoothed and standardized
layers within the same chamber C̃ creating matrices of
shape 12⇥46. The hit occupancy within one layer were
normalized using min-max scaler:

Ĉ =
C̃ �min(C̃)

max(C̃)�min(C̃)

This normalized values to [0, 1] range and retained re-
lations between the layers.

In order to evaluate the model, we use a subset of
the data (runs 304737, 304738, 304739, 304740) during
which layer 9 were operating at a di↵erent voltage in
a fraction of the chambers, see figure 7. During runs
304737, 304738, 304739, 304740 at 3450 V, and dur-
ing run 302634 at 3200 V. Due to the physics of gas
ionization by radiation, this results in an absolute dif-
ference in hit counting, which globally a↵ects the de-
tector. As we pointed out in Section 4 a local model
was not trained to detect such behavior as it regards
only 6% of those layers as faulty. The part of the test
set regarded as good chambers is corresponding to a
run 304736 where voltage problem was not present. Fi-
nally, we discard all chambers from good subset having
at least one layer problem according to our local algo-
rithm and finally we visually inspected them to seed
out any type II errors from the test set.

As the cost of labeling samples increases with re-
spect to local approach, we compared only semi-supervised
deep learning methods, including:

– simple bottleneck auto-encoder,
– convolutional auto-encoder,
– denoising auto-encoder,
– auto-encoder with sparsity regularization in hidden

layers.

Similarly to local approach we trained the auto-encoders
using Adam optimizer and early stopping mechanism

A

B

Fig. 8 Simple, denoising, sparse (A) and convolutional (B)
auto-encoder models architecture used to target contextual
strategy.

with the patience set to 32 epochs. Again, the imple-
mentation was prepared using Keras library with Ten-
sorFlow backend. The architecture of the model is shown
in figure 8. A simple, denoising and sparse auto-encoders
share similar architecture with parametric rectified lin-
ear unit as activations, while the convolutional auto-
encoder had a dedicated architecture. All models was
instructed to minimize the mean squared error ✏ be-
tween original, x, and reconstructed, ẍ, samples:

✏ =
1

k

X

k

X

i,j

(xk
i,j � ẍk

i,j)
2

6 Detecting unusual behavior using global

information

6.1 Motivation

This section presents a concept focusing on the global

approach based on the assumption that the occupancy
pattern depends on the chamber position in the detec-
tor, given the cylindrical symmetry of the LHC physics.
For instance the expected hit occupancy of chambers in
wheel 0 (closer to the collision point) will be lower than
chambers in the outer wheels (sitting far from the col-
lision point and protected by more material), whereas
chambers in wheels �2 and +2 are expected to show
similarities, due to the detector and collider symmetry.
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๏Given the nature of these data, ConvNN are a 
natural analysis tool. Two approaches pursued

๏Classify good vs bad data. Works if failure 
mode is known

๏Use autoencoders to assess data 
“typicality”. Generalises to unknown failure 
modes 
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Additionally, the experts expect chambers to behave
alike in the context of whole subdetector across di↵er-
ent runs.

The problem is clearly contextual, in the sense that
important explanatory attributes are not part of the
basic data features. Conditional anomaly detection [21]
has been proposed to deal with such situations when
the relevance of external attributes is unknown: for in-
stance, if a set of environmental or technical attributes
were monitored that could impact the behavior of the
detector components. In our case, the spatial position
of the chambers are both our only external attribute,
and their impact is assured. Thus, we are back to a
point anomalies problem.

6.2 Methods

In this approach we have used auto-encoder setup equiv-
alent to a simple bottleneck auto-encoder presented in
Section 5 with the change of the size of a latent layer,
which was decreased to 3 units for visualization pur-
poses.

Global faults were not tracked before by DT experts.
Hence, we are left only with unsupervised methods.

7 Results and Discussion

7.1 Local approach

The performance of the trained models on a held out
test dataset can be seen in figure 9. Due to the simplic-
ity of the model, the training converges to a satisfac-
tory result, despite the small size of the training sam-
ple. As shown in the score distribution of figure 10, the
proposed architecture separates anomalous from nor-
mal layers significantly. Model’s working point was cho-
sen at 0.5 not favoring specificity nor sensibility. When
the cost of type 1 and type 2 errors is defined, the
acceptable range of the working point could be any-
where in [0.1, 0.9] range. Compared to statistical, im-
age processing or other machine learning based solu-
tions, supervised deep learning clearly outperforms the
rest. Although the Area Under Curve (AUC) of the
fully-connected deep neural network is comparable to
the one of CNN, requiring maximum specificity and
sensibility makes it a favorable solution. The relatively
good performance of the basic and unsupervised vari-
ance method, compared to the poor results of the filter,
and the near optimal performance of the DNN, show
that the features to learn are not simple contrasts, al-
though the superior performance of the CNN demon-
strate that the initial edge detection layer is useful.

Fig. 9 ROC and AUC of respective algorithms used in local
approach

Fig. 10 Distribution of scores in local approach

The limited performance of Isolation Forest is likely
to come from the violation of its fundamental assump-
tion, that faults are rare (remember that the fault rate
is in the order of 10%) and similar (masking). The infe-
rior performance of the typical semi-supervised method
(SVM) illustrates the well-known smoothness versus lo-
cality argument for deep learning [13,12]: the di�culty
to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

The algorithm currently implemented in DQM sys-
tem targets a specific failure scenario and evaluates
samples per chamber, unlike our per layer approach.
Although it quantifies severity of the fault, it does not
identify specific layers with problems. Based on the la-
beled data we were able to construct a per-chamber
score to benchmark the algorithm i.e. if it indicates
there is at least one faulty layer in a chamber. While the
algorithm’s specificity was 91%, its sensitivity was only
26%. This appalling hit rate is not surprising as the test
was only targeting identification of dead regions.

Another drawback of the DQM algorithm is its per-
formance in low statistics region i.e. beginning of the
run. As seen in figure 11, convolutional model gradu-

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 9

Fig. 11 Stability of proposed model and the algorithm cur-
rently implemented in production. The three lines correspond
to results based on data from runs 306777, 306793, 306794.

ally adds alarms until reaching stability. The produc-
tion test is doing the opposite, generating a substantial
fraction of false alarms in the early stages of the run.

7.2 Extended local approach

To judge the performance of the auto-encoders, we have
used model’s mean squared error between original sam-
ple and its reconstruction in layer 9 of each chamber
in the test set (see figure 12) as an anomaly indica-
tion. Additionally this error could be quantified with
the severity of the problem as shown in figure 13. Fig-
ure 12 shows good performance of all models, especially
sparse auto-encoder. Although the AUC is not as high
as in local approach it is exclusively because of cham-
bers with layers operating at 3450 V which are di�-
cult to spot using only the occupancy data even with a
visual inspection. The chambers with layers operating
at lower voltage are having clear error separation from
good chambers as seen in figure 13.

As part of the experimental setup we accounted this
approach could cover the local anomalies as well. How-
ever, all the models were not able to find those kind of
anomalies better than a random guess, indicating that
we can get best results when applying both models in
a pipeline.

7.3 Global approach

Global approach is able to spot unusual behavior of
DT chambers taking into account the geographical con-
strains and paves the way to more flexible assessment
by scoring per detector region.

Figure 14 shows an example of latent representa-
tion of the chamber data clustering depending on the
chamber position in the detector. Additionally, while

Fig. 12 ROC and AUC of respective auto-encoders used in
contextual approach

Fig. 13 Mean squared error distribution for auto-encoder
with sparsity regularization.

Fig. 14 Latent representation of the chamber-level data. The
samples cluster according to position in the detector. Here
depending on the station, which correspondns to a distance
to collision point.

investigating latent representation for only one cham-
ber across di↵erent runs in figure 15, the latent rep-
resentation tends to cluster depending on the number
of problematic layers. We believe that this method will
help experts detecting previously unknown failure sce-
narios and with maintaining the list of transient issues.
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Autoencoders for New Physics 
searches



๏Searches for new physics are 
typically supervised

๏One knows what to look for

๏MC simulation provides labelled 
datasets to model the signal 
and the background

๏The analysis is performed as 
hypothesis testing

๏The bias (what to look for) enters 
very early in the game (often 
already at trigger level). What if we 
are looking in the wrong place?

Supervised search for new physics
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๏One can use Autoencoders to 
relax the assumption on the 
nature of new physics

๏Train on standard events

๏Run autoencoder on new 
events

๏Consider as anomalous all 
events with loss > threshold

Unsupervised search for new physics
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๏One needs the unsupervised algorithm to run before data are discarded

๏This would allow to possibly notice recurrent patterns across events -> 
suggest explanations (new models) -> runs a classic supervised search (+ 
dedicated trigger) on the data to come

Running in the trigger
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High-Level 
TriggerL1 trigger
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1 MB/evt
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๏Consider a stream of data coming from L1

๏Passed L1 because of 1 lepton (e,m) with 
pT>23 GeV

๏At HLT, very loose isolation applied

๏Sample mainly consists of W, Z, tt & QCD (for 
simplicity, we ignore the rest)

๏We consider 21 features, typically highlighting 
the difference between these SM processes (no 
specific BSM signal in mind)

Our use case: ℓ+X @HLT
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overlapping collisions per beam crossing (pileup) to ⇠ 20. These beam conditions loosely correspond
to the LHC operating conditions in 2016.

Events generated by PYTHIA8 are processed with the DELPHES library [21], to emulate detector
efficiency and resolution effects. We take as benchmark detector description the upgraded design of
the CMS detector, foreseen for the High-Luminosity LHC phase [22]. In particular, we use the CMS
HL-LHC detector card distributed with DELPHES. We run the DELPHES particle-flow (PF) algorithm,
which combines the information from different detector components to derive a list of reconstructed
particles, the so-called PF candidates. For each particle, the algorithm returns the measured energy
and flight direction. Each particle is associated to one of three classes: charged particles, photons,
and neutral hadrons.

Events are filtered at generation requiring an electron, muon, or tau lepton with pT > 22 GeV.
Once detector effects are taken into account with DELPHES, events are further selected requiring the
presence of one reconstructed electron or muon with transverse momentum pT > 23 GeV and a
loose isolation requirement ISO < 0.45, where the isolation is computed as:

ISO =

P
p 6=q

pp
T

pq
T

, (1)

and the sum extends over all the photons, charged and neutral hadrons within a cone of size �R =p
�⌘2 +��2 < 0.3 from the lepton.1

The 21 considered HLF quantities are:

• The isolated-lepton transverse momentum p`
T

.
• The three isolation quantities (CHPFISO, NEUPFISO, GAMMAPFISO) for the isolated

lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.
• The lepton charge.
• A boolean flag (ISELE) set to 1 when the trigger lepton is an electron, 0 otherwise.
• ST , i.e. the scalar sum of the pT of all the jets, leptons, and photons in the event with

pT > 30 GeV and |⌘| < 2.6. Jets are clustered from the reconstructed PF candidates, using
the FASTJET [23] implementation of the anti-kT jet algorithm [24], with jet-size parameter
R=0.4.

• The number of jets entering the ST sum (NJ ).
• The invariant mass of the set of jets entering the ST sum (MJ ).
• The number of these jets being identified as originating from a b quark (Nb).
• The missing transverse momentum, decomposed into its parallel (pmiss

T,k ) and orthogonal
(pmiss

T,?) components with respect to the isolated lepton direction. The missing transverse
momentum is defined as the negative sum of the PF-candidate pT vectors:

~p miss
T

= �
X

q

~p q

T
. (2)

• The transverse mass, MT , of the isolated lepton ` and the Emiss
T

system, defined as:

MT =
q
2p`

T
Emiss

T
(1� cos��) , (3)

with �� the azimuth separation between the lepton and ~p miss
T

vector, and Emiss
T

the absolute
value of ~p miss

T
.

• The number of selected muons (Nµ).
• The invariant mass of this set of muons (Mµ).

1As common in collider physics, we use a Cartesian coordinate system with the z axis oriented along the
beam axis, the x axis on the horizontal plane, and the y axis oriented upward. The x and y axes define the
transverse plane, while the z axis identifies the longitudinal direction. The azimuth angle � is computed from
the x axis. The polar angle ✓ is used to compute the pseudorapidity ⌘ = � log(tan(✓/2)). We fix units such
that c = ~ = 1.
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• The total transverse momentum of these muons (pµ
T,TOT

).

• The number of selected electrons (Ne).
• The invariant mass of this set of electrons (Me).
• The total transverse momentum of these electrons (pe

T,TOT
).

• The number of reconstructed charged hadrons.
• The number of reconstructed neutral hadrons.

This list of HLF quantities is not defined having in mind a specific BSM scenario. Instead, it is
conceived to include relevant information to discriminate the various SM processes populating the
single-lepton data stream. On the other hand, it is generic enough to allow (at least in principle) the
identification of a large set of new physics scenarios.

Many SM processes would contribute to the considered single-lepton dataset. For simplicity, we
restrict the list of relevant SM processes to the four with highest production cross section, namely:

• Inclusive W production, with W ! `⌫ (` = e, µ, ⌧ ).
• Inclusive Z production, with Z ! `` (` = e, µ, ⌧ ).
• tt̄ production.
• QCD multijet production.2

These samples are mixed to provide a SM cocktail dataset, which is then used to train autoencoder
models and to tune the threshold requirement that defines what we consider an anomaly. The cocktail
is built scaling down the high-statistics samples (tt̄, W , and Z samples) to the lowest-statistics one
(QCD, whose generation is the most computing-expensive), according to their production cross-
section value (estimated at leading order with PYTHIA) and selection efficiency (shown in Tab. 1).
The equivalent integrated luminosity of the SM cocktail sample corresponds to XXX fb�1.

Table 1: Acceptance and trigger efficiency of SM processes and corresponding values for BSM
benchmark models. The monthly event yield is computed assuming an average integrated luminosity
of 5 fb�1 per month, corresponding to 8 months of data taking and a total integrated luminosity of
⇠ 40 fb�1, as in 2016. For BSM models, we compute the production cross section corresponding to
100 selected events.

Standard Model processes
Process Acceptance Trigger Cross Events Event

efficiency section [nb] fraction /month
W 55.6% 68% 58 59.2% 110M

QCD 0.08% 9.6% 1.6 · 105 33.8% 63M
Z 16% 77% 20 6.7% 12M
tt̄ 37% 49% 0.7 0.3% 0.6M

BSM benchmark processes
Process Acceptance Trigger Total Cross-section

efficiency efficiency 100 events/month
Z 0 31% 29% 9.1% 219 fb
W 0 48% 62% 29.7% 67 fb

LQ ! b⌧ 19% 62% 12.0% 166 fb
a ! 4` 5% 98% 4.6% 436 fb

In addition, we consider the following BSM models to benchmark the anomaly-detection capabilities:

• A leptoquark with mass 80 GeV, decaying to a b quark and a ⌧ lepton.
• A Higgs scalar boson with mass 50 GeV, decaying to two off-shell Z bosons, each forced to

decay to two leptons (for a total of four leptons in the final state).
• A Z 0 with mass 60 GeV, decaying to a pair of opposite-sign same-flavor leptons.

2To speed up the generation process for QCD events, we require
p
ŝ > 100 GeV, the fraction of QCD events

with
p
ŝ < 100 GeV and producing a lepton within acceptance being negligible but computationally expensive.
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ŝ > 100 GeV, the fraction of QCD events

with
p
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Figure 1: Distribution of the HLF quantities for the four considered SM processes. Black, red, blue
and gree represent respectively W, QCD, Z and tt̄. CAN WE PLOT THESE 3x7, so that we take
one page but we make them bigger? We can add the legend with keynote on top, or some such.

• A W 0 with mass 70 GeV, decaying to a lepton and a neutrino.

For each model, we consider any direct production mechanism implemented in PYTHIA8, including
associate jet production. We list in Tab. 1 the leading-order production cross section and selection
efficiency of each model.

Figures 1 and 2 show the distribution of HLF quantities for the SM processes and the BSM benchmark
models, respectively.

4 Model description

Autoencoders are trained on the SM cocktail sample described in Sec. 3, taking as input the 21 HLF
quantities listed there. The use of HLF quantities to represent events limits the model independence
of the anomaly detection procedure. While the list of features is chosen to represent the main physics
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๏We train a VAE on a cocktail of SM 
events (weighted by xsec)

๏ENCODER: 21 inputs, 2 hidden layers 
→ 4Dim latent space

๏DECODER: from a random sample in 
the 4D space → 2 hidden layers → 21 
outputs

Standard Model AE
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Figure 3: Schematics of the VAE used to perform anomaly detection, where X represent the input
variables and z the latent space variables. The shape of each layer is reported in brackets.

4.1 Auto-encoder

Auto-encoders (AE) are algorithm that compress a given set of inputs variables in a latent space
(encoding) and then, starting from the latent space, reconstruct the HLF input values (decoding).
AE are used in the context of anomaly detection, associating a p-value to a given event through a
quantification of the encoding-decoding distance.

In this work we focus on variational autoencoder (VAEs) [25]. Unlike traditional AEs, VAEs return
the parameter’s value of the predicted latent and input (reconstructed) probability density function
(pdf) for each event, instead of decoded values of the input quantities. The functional form of the pdfs
is specified through the loss function and the pdfs’ shape parameters are determined during training.

We consider the VAE architecture shown in Fig. 3, characterized by a four-dimensional latent space.
Each latent dimension is associated to a Gaussian pdf and its two degrees of freedom (mean µ and
variance �2). The input layer consists of 21 nodes, corresponding to the 21 HLF quantities described
in Section 3. This layer is connected to the hidden space through two hidden dense layers, each
consisting of 50 neurons with ReLU activation function. Two four-neuron layers are connected to
the second hidden layer. Linear activation functions are used for the first of these four-neuron layers.
Its nodes are interpreted as the mean values µz of the latent-space Gaussian pdfs. The nodes of the
second layer are activated by p-ISRLu functions REF HERE:

f(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
xp

1 + x2
. (4)

They are interpreted as the �z parameters of the latent-space Gaussian pdfs. The decoding step
originates from a point in the latent space, sampled according to the predicted pdf (green oval in
Fig. 3). The coordinates of this point in the latent space are fed into a sequence of two hidden
dense layers, each consisting of 50 neurons with ReLU activation functions. The last of these layers
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๏  We consider four BSM benchmark models, to 
give some sense of VAEs potential

๏ leptoquark with mass 80 GeV, LQ→bτ 

๏A scalar boson with mass 50 GeV, 
a→Z*Z*→4ℓ

๏A scalar scalar boson with mass 60 GeV, 
h→ττ

๏A charged scalar boson with mass 60 GeV, 
h±→τv

Some BSM benchmark

�30

• The total transverse momentum of these muons (pµ
T,TOT

).

• The number of selected electrons (Ne).
• The invariant mass of this set of electrons (Me).
• The total transverse momentum of these electrons (pe

T,TOT
).

• The number of reconstructed charged hadrons.
• The number of reconstructed neutral hadrons.

This list of HLF quantities is not defined having in mind a specific BSM scenario. Instead, it is
conceived to include relevant information to discriminate the various SM processes populating the
single-lepton data stream. On the other hand, it is generic enough to allow (at least in principle) the
identification of a large set of new physics scenarios.

Many SM processes would contribute to the considered single-lepton dataset. For simplicity, we
restrict the list of relevant SM processes to the four with highest production cross section, namely:

• Inclusive W production, with W ! `⌫ (` = e, µ, ⌧ ).
• Inclusive Z production, with Z ! `` (` = e, µ, ⌧ ).
• tt̄ production.
• QCD multijet production.2

These samples are mixed to provide a SM cocktail dataset, which is then used to train autoencoder
models and to tune the threshold requirement that defines what we consider an anomaly. The cocktail
is built scaling down the high-statistics samples (tt̄, W , and Z samples) to the lowest-statistics one
(QCD, whose generation is the most computing-expensive), according to their production cross-
section value (estimated at leading order with PYTHIA) and selection efficiency (shown in Tab. 1).
The equivalent integrated luminosity of the SM cocktail sample corresponds to XXX fb�1.

Table 1: Acceptance and trigger efficiency of SM processes and corresponding values for BSM
benchmark models. The monthly event yield is computed assuming an average integrated luminosity
of 5 fb�1 per month, corresponding to 8 months of data taking and a total integrated luminosity of
⇠ 40 fb�1, as in 2016. For BSM models, we compute the production cross section corresponding to
100 selected events.

Standard Model processes
Process Acceptance Trigger Cross Events Event

efficiency section [nb] fraction /month
W 55.6% 68% 58 59.2% 110M

QCD 0.08% 9.6% 1.6 · 105 33.8% 63M
Z 16% 77% 20 6.7% 12M
tt̄ 37% 49% 0.7 0.3% 0.6M

BSM benchmark processes
Process Acceptance Trigger Total Cross-section

efficiency efficiency 100 events/month
h0 ! ⌧⌧ 9% 70% 6% 335 fb
h0 ! ⌧⌫ 18% 69% 12% 163 fb
LQ ! b⌧ 19% 62% 12% 166 fb
a ! 4` 5% 98% 5% 436 fb

In addition, we consider the following BSM models to benchmark the anomaly-detection capabilities:

• A leptoquark with mass 80 GeV, decaying to a b quark and a ⌧ lepton.
• A Higgs scalar boson with mass 50 GeV, decaying to two off-shell Z bosons, each forced to

decay to two leptons (for a total of four leptons in the final state).
• A Z 0 with mass 60 GeV, decaying to a pair of opposite-sign same-flavor leptons.

2To speed up the generation process for QCD events, we require
p
ŝ > 100 GeV, the fraction of QCD events

with
p
ŝ < 100 GeV and producing a lepton within acceptance being negligible but computationally expensive.
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๏Anomaly defined as a p-value 
threshold on a given test 
statistics

๏Loss function an obvious 
choice

๏Some part of a loss could be 
more sensitive than others

๏We tested different options 
and found the total loss to 
behave better

Defining anomaly
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A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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๏VAE’s performances benchmarked 
against supervised classifiers

๏For each BSM model

๏ take same inputs as VAE

๏ train a fully-supervised classifier to 
separate signal from background

๏use supervised performances as a 
reference to aim to with the 
unsupervised approach

๏Done for our 4 BSM models using 
dense neural networks

Benchmark comparison
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Supervised Classifier (BDT)

๏Evaluate general discrimination 
power by ROC curve and area 
under curve (AUC)

๏clearly worse than supervised

๏but not so far

๏Fixing SM acceptance rate at 50 
events/day

๏competitive results considering 
unsupervised nature of the 
algorithm

Performances
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A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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Variational Autoencoders for 
particle physics



๏We train a VAE on a cocktail of SM 
events (weighted by xsec)

๏ENCODER: 21 inputs, 2 hidden layers 
→ 4Dim latent space

๏hidden nodes = μ and σ of the 
Gaussian pdfs describing the hidden 
variables

๏DECODER: from a random sample in 
the 4D space → 2 hidden layers → 
parameters describing the shape of 
the 21Dim input space

Back to our example

�35
Figure 3: Schematics of the VAE used to perform anomaly detection, where X represent the input
variables and z the latent space variables. The shape of each layer is reported in brackets.

4.1 Auto-encoder

Auto-encoders (AE) are algorithm that compress a given set of inputs variables in a latent space
(encoding) and then, starting from the latent space, reconstruct the HLF input values (decoding).
AE are used in the context of anomaly detection, associating a p-value to a given event through a
quantification of the encoding-decoding distance.

In this work we focus on variational autoencoder (VAEs) [25]. Unlike traditional AEs, VAEs return
the parameter’s value of the predicted latent and input (reconstructed) probability density function
(pdf) for each event, instead of decoded values of the input quantities. The functional form of the pdfs
is specified through the loss function and the pdfs’ shape parameters are determined during training.

We consider the VAE architecture shown in Fig. 3, characterized by a four-dimensional latent space.
Each latent dimension is associated to a Gaussian pdf and its two degrees of freedom (mean µ and
variance �2). The input layer consists of 21 nodes, corresponding to the 21 HLF quantities described
in Section 3. This layer is connected to the hidden space through two hidden dense layers, each
consisting of 50 neurons with ReLU activation function. Two four-neuron layers are connected to
the second hidden layer. Linear activation functions are used for the first of these four-neuron layers.
Its nodes are interpreted as the mean values µz of the latent-space Gaussian pdfs. The nodes of the
second layer are activated by p-ISRLu functions REF HERE:

f(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
xp

1 + x2
. (4)

They are interpreted as the �z parameters of the latent-space Gaussian pdfs. The decoding step
originates from a point in the latent space, sampled according to the predicted pdf (green oval in
Fig. 3). The coordinates of this point in the latent space are fed into a sequence of two hidden
dense layers, each consisting of 50 neurons with ReLU activation functions. The last of these layers
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๏Loss function described as the 
sum of two terms (scaled by a 
tuned λ parameter that makes 
the two contribution 
numerically similar)

๏Reconstruction loss: 
likelihood of the input 21Dim 
point, given the shape 
parameters reconstructed 
from it

๏KL loss: distance between 
the pdf in the latent space 
and an nDim Gaussian

The Loss Function

�36

is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
1

2
(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:

LossTot = Lossreco + �DKL , (6)
where � is a free parameter, set to 0.3 in this work. The prior chosen for the latent space is a 4-dim
Gaussian with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the covariance
matrix (�P ) are free parameters of the algorithm and are optimized during the back-propagation. The
Kullback-Leibler divergence between two Gaussian distribution has an analytic form. Hence, for
each batch, DKL can be expressed as:
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where k is the batch size, i runs over the samples and j over the latent space dimensions. Similarly,
Lossreco is the average likelihood of the inputs given the predicted ↵ values:

Lossreco = �1
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where j runs over the input space dimensions, fj is the functional form chose to describe the pdf of
the j-th input space variable and ↵i,j

m
are the parameter of the function. Different functional forms

have been chose for fj , to properly describe different classes of HLF distributions:

• Clipped Log-normal + � function: used to describe ST , MJ , pµ
T

, Mµ, pe
T

, Me, isolated-
lepton pT , ChPFIso, NeuPFIso and GammaPFIso:
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• Truncated Gaussian: a Gaussian truncated for negative values and normalized to unit area
for X > 0. Used to model MT :
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• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to be evaluated

on integers (i.e.
1X
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is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
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(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:
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are activated by the functions:

p-ISRLu(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
x

p
1 + x2

. (4.1)

This activation allows to improve the training stability, being strictly positive defined, non
linear, and with no exponentially growing term (which might have created instabilities in
the early epochs of the training). The four nodes of this layer are interpreted as the �z
parameters of p(z). After several trials, the dimension of the latent space has been set
to 4 in order to keep a good training stability without impacting the VAE performances.
The decoding step originates from a point in the latent space, sampled according to the
predicted pdf (green oval in Fig. 3). The coordinates of this point in the latent space are
fed into a sequence of two hidden dense layers, each consisting of 50 neurons with ReLU
activation functions. The last of these layers is connected to three dense layers of 21, 17,
and 10 neurons, activated by linear, p-ISRLu and clipped-tanh functions, respectively. The
clipped-tanh function if written as:

Ctanh(x) =
1

2
(1 + 0.999 · tanhx) . (4.2)

Given the latent-space representation, the 48 output nodes represent the parameters of the
pdfs describing the input HLF probability, i.e., the ↵ parameters of Eq.(4.5).

The total VAE loss function LossTot is a weighted sum of two pieces [35]: a term re-
lated to the reconstruction likelihood (Lossreco) and the Kullback-Leibler divergence (DKL)
between the latent space pdf and the prior:

LossTot = Lossreco + �DKL , (4.3)

where � is a free parameter. We fix � = 0.3, for which we obtained good reconstruction
performances.4 The prior p(z) chosen for the latent space is a four-dimension Gaussian
with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the co-
variance matrix (�P ) are free parameters of the algorithm and are optimized during the
back-propagation. The Kullback-Leibler divergence between two Gaussian distributions has
an analytic form. Hence, for each batch, DKL can be expressed as:
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where k is the batch size, i runs over the samples and j over the latent space dimensions.
Similarly, Lossreco is the average negative-log-likelihood of the inputs given the predicted ↵

values:

Lossreco = �
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(4.5)

4
Following Ref. [35], we tried to increase the value of � up to 4 without observing a substantial difference

in performance.
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๏First post-training check consists in verifying 
encoding-decoding capability, comparing input 
data to those generated sampling from 
decoder

๏Reasonable agreement observed, with small 
discrepancy here and there

๏NOTICE THAT: this would be a suboptimal 
event generator, but we want to use it for 
anomaly detection

๏no guarantee that the best autoencoder is 
the best anomaly detector (no anomaly 
detection rate in the loss function)

๏pros & cons of an unsupervised/
semisupervised approach

Standard Model encoding

�37



๏Anomaly defined as a p-value threshold on a given test statistics

๏Loss function an obvious choice

๏Some part of a loss could be more sensitive than others

๏We tested different options and found the total loss to behave better

Defining anomaly
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Figure 7. Distribution of the VAE’s loss components, Lossreco (left) and DKL (right), for the
validation dataset. For comparison, the corresponding distribution for the four benchmark BSM
models are shown. The vertical line represents a lower threshold such that 5.4 · 10�6 of the SM
events would be retained, equivalent to ⇠ 1000 expected SM events per month.

SM process. In view of this, we decided to use a tight threshold value, in order to reduce
as much as possible any SM contribution.

Figure 7 shows the distribution of the Lossreco and DKL loss components for the val-
idation dataset. In both plots, the vertical line represents a lower threshold such that a
fraction ✏SM = 5.4 · 10�6 of the SM events would be retained. This threshold value would
result in ⇠ 1000 SM events to be selected every month, i.e., a daily rate of ⇠ 33 SM events,
as illustrated in Table 3. The acceptance rate is calculated assuming the LHC running
conditions listed in Section 1. Table 3 also reports the by-process VAE selection efficiency
and the relative background composition of the selected sample.

Figure 7 also shows the Lossreco and DKL distributions for the four benchmark BSM
models. We observe that the discrimination power, loosely quantified by the integral of
these distributions above threshold, is better for Lossreco than DKL and that the impact
of the DKL term on LossTot is negligible. Anomalies are then defined as events laying on
the right tail of the expected Lossreco distribution. Due to limited statistics in the training
sample, the p-value corresponding to the chosen threshold value could be uncalibrated. This
could result in a deviation of the observed rate from the expected value, an issue that one
can address tuning the threshold. On the other hand, an uncalibrated p-value would also
impact the number of collected BSM events, and the time needed to collect an appreciable
amount of these events.

Once the Lossreco selection is applied, the anomalous events don’t cluster on the tails
of the distributions of the input features. Instead, they tend to cover the full feature-
definition range. This is an indication of the fact that the VAE does more than a simple
selection of feature outliers, which is what is done by traditional single-lepton trigger or by
dedicated cross triggers (e.g., triggers that select events with soft leptons and large missing
transverse energy, ST , etc.). This is shown in Fig. 8 for SM events. A similar conclusion
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๏Evaluate general discrimination 
power by ROC curve and area 
under curve (AUC)

๏clearly worse than supervised

๏but not so far

๏Fixing SM acceptance rate at 50 
events/day

๏competitive results considering 
unsupervised nature of the 
algorithm

Performances
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A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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๏Small efficiency but still much larger than for SM processes

๏Allows to probe 10-100 pb cross sections for reasonable amount of 
collected signal events

Performances
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Process Efficiency for ~30 evt/day xsec for 100 evt/month 
[pb] xsec for S/B~1/3 [pb]

a→4ℓ 2.8·10-3 7.1 27

LQ→τb 6.5·10-4 31 120

h→ττ 3.6·10-4 56 220

h±→τν 1.2·10-3 17 67


