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Autoencoders

@ Autoencoders are networks
with a typical “bottleneck”
structure, with a symmetric
structure around it

® They go from Rn— Rn

@ They are used to learn the
identity function as f1( f(x))

where f: Rn— Rkand f1: Rk—
RN

@ Autoencoders are essential
tools for unsupervised studies

Encoder

Latent
space

Compressed
representation

Decoder

-* -
L. s =0
*e* e

-
......
......

.

ounci




Dimensional Reduction

@ Autoencoders can be seen as compression algorithms

@® The n inputs are reduced to k quantities by the encoder
@® Through the decoder, the input can be reconstructed from the k quantities

@ As a compression algorithm, an auto encoder allows to save (n-k)/n of the space normally occupied by
the input dataset
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® The auto encoder can be o

used as a clustering
algorithm

@ Alike inputs tend to
populate the same region
of the latent space

@ Different inputs tend to be o
far away




Training an Autoencoder

‘ ] QCD
@ AEs are training minimizing the
distance between the inputs and 3 1 epoch
the corresponding outputs 1
@® The loss function represents | UI Il
_ _ < : | ' o nn I
some distance metric between _— 0500000 1000000] 1500000 2000000 2500000
the two § 10 epoch
@ e.g., MSE loss T N
o . T | VI-LII | o
@® A minimal distance guarantees _x- R B VTP 1
that the latent representation + £
: a 42 epoch
decoder is enough to g (reached early
reconstruct the input information | Jl] stopping} o
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Anomaly detection

® Once trained, an autoencoder
can reproduce new inputs of the

same kind of the training dataset
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@ The distance between the input
and the output will be small
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@ If presented an event of some
new kind (anomaly), the
encoding-decoding will tend to fall
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Convolutional Autoencoders

Cilker. % 1

@ Conv Autoencoders take
Images as input

lmage
L CCO\"P?_{
@ Through Conv and e T2z
MaxPooling, they reduce e AT
it to some latent-space 1D S s
array K

@ This 1D array is expanded
using the inverse of the

encoder functions "Bed of Nails” Nearest Neighbor
1 2 1 5
® ConvTranspose (aka 3 4 sTal
“Deconvolution”)
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4 European
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Example: Jet autoencoders

| o | Farina et al., arXiv:1808.08992
@ ldea applied to tagging jets, in order Heimel et al.. arXiv:1808.08979

to define a QCD-jet veto

QCD
t
1.0 )
@ Applied in a BSM search (e.g., dijet G (400 GeV)
resonance) could highlight new 08
physics signal o
- _ 0.4
@ Based on image and physics- B
inspired representations of jets v
0.0 — —— _ -
10 10 10 10
Reconstruction Error
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https://arxiv.org/pdf/1808.08992.pdf
https://arxiv.org/pdf/1808.08979.pdf

Recurrent Autoencoders

@® When given as input a sequence, the AE needs a recurrent layer to process it
@® The encoder is similar to the classifier we already saw

@ What about the decoder? This is where the serial output of the RNN comes in
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Variational Autoencoders

@® We investigated variational encode > decode >
autoencoders

@® Unlike traditional AEs, VAEs try to
associate a multi-Dim pdf to a
given image

@ can be used to generate new
examples

@ comes with a probabilistic

N7
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@ tends to work better than o
traditional AEs i |
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The Loss Function

@ Loss function described as the sum
of two terms (scaled by a tuned A
parameter that makes the two

contribution numerically similar) LossTot = LOSSteco + BDKI,

@ Reconstruction loss (e.g.

1 1 1
MSE (output-input)) Pri =7 ;DKL (N(pz02) || N(up,op))

. . 2k &
Gaussian pdfs (assumption on ]

prior here)

- ! N e A
@ KL loss: distance between (apazﬂ) + . I N

® Why Gaussian? KL loss can be
written analytically
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Clustering with VAE

@® In the clustering example, the
different populations are forced o -
sums of Gaussian distributions

| —

@ This gives more regular shape foro-

the clusters .
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A Generative model

@ Now that we have a probabilistic description of the latent space, we can sample points from it
@® These points, propagated through the decoder, will provide new examples

@® We have defined a generative model
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More effective with sequential data

LSTM tastes really great
encoder T A 1 star the food was good but the service was horrible . took forever to get our food . we had to ask
CNN twice for our check after we got our food . will not return .
LSTM 9| LSTM || LSTM >@—> 2 star the food was good , but the service was terrible . took forever to get someone to take our drink
Decoder : . :
f f f order . had to ask 3 times to get the check . food was ok , nothing to write about .
3 star came here for the first time last night . food was good . service was a little slow . food was just
tastes really great ok

5 g . : 4 star food was good , service was a little slow , but the food was pretty good . 1 had the grilled chicken
(a) VAE training graph using a dilated CNN decoder. sandwich and it was really good . will definitely be back !

: ; : '
tastes really great EOS Sstar food was very good , service was fast and friendly . food was very good as well . will be back !

@) Q /0 dilation=2
o L] . Sclence
C ) ) dilation=1 TRy

E—_)) input
embedding

O O O O Business: ~ i
., . 8 !

BOS tastes really great N :
(b) Digram of dilated CNN decoder. | Com;;th'eT’”:-.:..’: Relationship
(a) Yahoo (b) Yelp

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017
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More effective with sequential data

Discrete _ | ?iicrette
i eeeessqereiees]|  Sample ol
Al B || cennt el veenhsen b >
U, 128 0, 128
Condition yyaveivet Condition
Prior
v v
Encoder STssEesAS,
Downsample 64x et eeorel| WaveNet e e et | Vvavenet
Decoder oporeporesogan | Decoder
Sample
reconstruction generation

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.
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SMILES input

ENCODER

Neural Network

CONTINUOUS
MOLECULAR

REPRESENTATION

(Latent Space)

DECODER

Neural Network

SMILES output

Gomez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.
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Kusner, M. J., Paige, B., & Hernandez-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01928.
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Summary

@ Autoencoders are NNs for unsupervised problems
@ Clustering
@® Dimensional reduction
@ Anomaly detection
® When adding variational functionality
@® Can be used as generators

@ Can improve robustness (e.g., anomaly detection performance)

@ Could be relevant to reduce model dependence in searches for new physics at the

LHC
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® When taking data, >1 person watches for
anomalies in the detector 24/7

@ Instead, local information from detector
components available (e.g., detector
occupancy in a certain time window)

13 MB4 4
MB3
MBZ
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Example: Data Quality Monitoring

@ At this stage no global processing of the event » n - pa -

Raw Occupancy (Run: 272011 W: 1.0, St 1.0, Sec: 6.0) -

Channel

B
Raw Occupancy (Run: 273158, W: 0.0, St: 2.0, Sec: 12.0) -

0 10 20 30 40 50
Channel

C
Raw Occupancy (Run: 275310, W: 1.0, St: 2.0, Sec: 7.0)

0 ] 10 20 30 40 50 | 0
Channel . .;.:;-..; European
Pol, G. Cerminara, C. Germain, MP and el' C| cooner
A. Seth arXiv:1808.00911



https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

Bl Example: Data Quality Monitoring

Fully connected

3x1 convolutions

—
i:lj_‘ 5x1 max pooling
S

@ Given the nature of these data, il R,

ConvNN are a natural analysis tool.
Two approaches pursued B =

10 9x1 feature maps

47x1 input -

@ Classify good vs bad data. Works
if failure mode is known

‘ Fully con@>
\———— /

4x4 convolutions 4x4 upsampling

® Use autoencoders to assess data 2mh e, T
typicality”. Generalises to _ - |I|
unknown failure modes B

A. Pol et al., to appear soon s | Research
? PP Pol, G. Cerminara, C. Germain, MP and @ ¥FC| counci

3 A. Seth arXiv:1808.00911



https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

B Example: Data Quality Monitoring

Good
70 1 Bl Layer 9 at 3200V
&0 B Layer 9 at 3450V
® Given the nature of these data, ConvNN are a 5,
natural analysis tool. Two approaches pursued S »
@ Classify good vs bad data. Works if failure oL
mode Is known MSE In layer s

Receiver Operating Characteristic (ROC)

10 T W

@ Use autoencoders to assess data o
“typicality”. Generalises to unknown failure
modes S

- = NN, AUC: 0.989
- CNN, AUC: 0.997
CNN working point

o
N

0.0

0.00  0.02 004 006 008 010 012 014
Fall-out (TNR) o'n%"

A. Pol et al., to appear soon SETRE | Reseurch
’ PP Pol, G. Cerminara, C. Germain, MP and :::@¥C Counc
Z A. Seth arXiv:1808.00911 TR
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Supervised search for new physics

<2000

® Searches for new physics are o [ CMSPreliminary ¢~ 98 Weighted Dt
typically supervised G1800[ ts=7TeV.L=511" " Bkg Fit Component
ypically sup N " (s=8TeV,L=5.31b" g
(01600 N\ ;2(;
@® One knows what to look for 1400 +
- | 21200
@ MC simulation provides labelled & : ¥
datasets to model the signal 1000
and the background 8 800 AR
o % 600 S
@® The analysis is performed as S s
hypothesis testing < 400¢ =
200 |
@ The bias (what to look for) enters ob— I 1('10 .
very early in the game (often GeV
already at trigger level). What if we m,, ( e)

are looking in the wrong place? erc seseuen
24 25




Unsupervised search for new physics

@ One can use Autogncoders to = ocD
relax the assumption on the :] ;4
nature of new physics 10-° 3 top
@ [rain on standard events = q

2 107 4 ‘
E |
@ Run autoencoder on new & | |
events ll '
10-2 4 il
. r | T
@ Consider as anomalous all —MIWNINe 0 0§ 0 2 |
_ 0 500000 1000000 1500000 2000000 2500000
events with loss > threshold AE Loss
25




Running In the trigger

® One needs the unsupervised algorithm to run before data are discarded

@ This would allow to possibly notice recurrent patterns across events ->
suggest explanations (new models) -> runs a classic supervised search (+
dedicated trigger) on the data to come

1 KHz
1 MB/evt

26



Our use case: 24+X @HLT

r =

@ ConSIder d Stream Of data COmmg from L1 e The isolated-lepton transverse momentumpgp.

e The three isolation quantities (CHPFISO, NEUPFIsO, GAMMAPFISO) for the isolated
lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.

@ Passed L1 because of 1 lepton (e,m) with * The lepton charge.
e A boolean flag (ISELE) set to 1 when the trigger lepton 1s an electron, O otherwise.
pT>23 GeV e S7,i.e. the scalar sum of the pp of all the jets, leptons, and photons in the event with

pr > 30 GeV and |n| < 2.6. Jets are clustered from the reconstructed PF candidates, using
the FASTJET [23] implementation of the anti-k7 jet algorithm [24], with jet-size parameter

. . . R=0.4.
@ At H LT, ve ry |OOS€ |SO|at|0n appl Ied e The number of jets entering the St sum (V).
e The invariant mass of the set of jets entering the St sum (M ).
_ _ e The number of these jets being identified as originating from a b quark (V).
@ Sam ple mal n |y CO”S'StS Of W, Z, tt & QC D (fOI‘ e The missing transverse momentum, decomposed into its parallel (pgl“'f) and orthogonal
: = " Ijnfsj) components with respect to the isolated lepton direction. The missing transverse
SIm pl |C|ty, WeE Ig nore th ere St) momentum 1s defined as the negative sum of the PF-candidate pr vectors:
—Miss —q
= — : (2)
Standard Model processes i zq: o
Process | Acceptance  Trigger Cross Events  Event , |
X . . e The transverse mass, M, of the isolated lepton ¢ and the E7**° system, defined as:
efficiency section [nb] | fraction /month
W 55.6% 68% 58 5 59.2%  110M My = \/2p% B3 (1 — cos Ag) | (3)
QgD Oi%é(;? %’S(%) 1 '62'010 363. ;78((7? ?gﬁ \\?/;ltEerffb 2;I;I;S?’zimuth separation between the lepton and p™* vector, and EI the absolute
tt 37% _ A49%A i 0.7 O°3% 0.6M e The number of selected muons (/V,,).
e The invariant mass of this set of muons (M ,).
e The total transverse momentum of these muons (pf}’TOT).
] . ] ] ] e The number of selected electrons (/V,).
@ We ConSIder 21 featu reSa typ|Ca| Iy h Ig h I Ig htl ng e The invariant mass of this set of electrons (M,).
the d |ffe rence between these S M processes (nO e The total transverse momentum of these electrons (p% ror)- s Eurones
. : : : e The number of reconstructed charged hadrons. RORXAAT T Researc
SpeCIfIC BS M S| g N al In mi nd) The number of reconstructed neutral hadrons. .°°-e.-‘r c Councl
27 RREREL 4




Our use case: 24+X @HLT

@ Consider a stream of data coming from L1 1w
: 10
10 E :4 10:4
@ Passed L1 because of 1 lepton (e,m) with L s oo
S; [GeV] Jets Mass [GeV] Muons P [GeV] Muons Mass [GeV]
0T>23 GeV A A
10°2 ﬁﬁi& 0.02" - I
1074 0.01 7
@ At HLT, very loose isolation applied ol oSS
Electrons P, [GeV] Electrons Mass [GeV] Lep P_[GeV] - ChPFlso
@ Sample mainly consists of W, Z, tt & QCD (for T ~— o
simplicity, we ignore the rest) of 0 T W 0
! c(a)fmmaPFlgés ° U bRl 0 %%HSS ) iss
Standard Model processes 0.04 | S i ; * | |
Process | Acceptance  Trigger Cross Events  Event 0.4 04 i
efficiency section [nb] | fraction /month oo 1 oa I | ™ _
%4 55.6% 68% 58 59.2% 110M . | \ A = j\:M_ N s I s
QCD 008% 96% ].6 * 105 338% 63M > 1I(\)/I(T)[GeV] ° 1 Mugns nurr?ber ° ?ets number ° b-tazgged jets‘t\umber
Z 16% 77% 20 6.7% 12M * * * 06 ' — gy — |
tt 37% 49% 0.7 0.3% 0.6M 0.4 1047 | 04 | 177
- ‘ ) 0.2- 102 102 197
0% > 4 V5 0 1 %5 0o o5 1 15 % 500
Electrons number Lep Charge [€] IsEle Charged Had number

@ We consider 21 features, typically highlighting A —W
the difference between these SM processes (no —QCD

o | — "-":‘:"'-' esearch
specific BSM signal in mind) SN ‘ erc|u
28 10()Neuz’[?al Haé3 ?1?meer o ::..':::’




Standard Model AE

@ We train a VAE on a cocktail of SM
events (weighted by xsec)

@ ENCODER: 21 inputs, 2 hidden layers
— 4Dim latent space

@ DECODER: from a random sample in
the 4D space — 2 hidden layers — 21
outputs

29

Encoder h1( -, 50)
Encoder h2 ( -, 50)
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Decoder h1( -, 50)
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Some BSM benchmark

@ We consider four BSM benchmark models, to
give some sense of VAEs potential

—6 [ ! ! ] L | | ‘ = . :
107 200 400 0 500 0 50 100 150
S; [GeV] Jets Mass [GeV] Muons P, [GeV] Muons Mass [GeV]

@ leptoquark with mass 80 GeV, LQ—bTt

10_2§

@ A SCa|aI’ bOSO” W|th MassS 50 GeV, 10_35 50 100 150 _; 0 01 02 03

Electrons P, [GeV] Electrons Mass [GeV] Lep P_[GeV] ChPFlso

a—’Z*Z*—’4Q | | | | 0.06"

10_1%" 3 107"

1107 R
U

- 10_2§

| 0.06F

004 1 0.04-

1072 iii': i
H

©0.02 - 002

@ A scalar scalar boson with mass 60 GeV, NS L S N o= == A
h — TT | GammaPFlso | NeuPFlso > P?ijs
@® A charged scalar boson with mass 60 GeV, % _ ] :
hi_’TV : SXO 1él)\;l)T[GeV] 0 6 é Muo4ns numb6er 06 Jéets number : 6 b-taggéed jets numter
BSM benchmark processes 0.4 04 o4l Ihas ,\
Process | Acceptance  Trigger Total Cross-section os | oa | o4 T
efficiency | efficiency 100 events/month L R e | | N

ho — TT 9% 70% 6% 335 fb Electrons number Lep Charge [€] IsEle Charged Had number
ho s 1y 18% 69% 12% 163 fb S )

LQ — bt 19% 62% 12% 166 tb 004 | - qo — TT
a — 4€ 5% 98% 5% 436 fb 0.02- - r]"‘ _s v ; .;.:;-.c European
T B XXX Research
‘ ‘ ‘ '. :".:}.'..'..erc Council
%" 100 200 300 — LQ S ses:
30 Neutral Had number et et




___ Defining anomaly

---- 1k evts/month

® Anomaly defined as a p-value 1 M dal Mix
threshold on a given test 107 —1 hOoTT
statistics . O A

=1 h*>1v

(-
9
W

1 LQ

@ Loss function an obvious
choice

Probability
(-
<

@ Some part of a loss could be 107"
more sensitive than others

10—9_

@ We tested different options
and found the total loss to 10-1 10° 10! 102 103 10% 10°
behave better MSE

3



® VAE’s performances benchmarked
against supervised classifiers

@ For each BSM model
@ take same inputs as VAE

@ train a fully-supervised classifier to
separate signal from background

@ use supervised performances as a
reference to aim to with the
unsupervised approach

@ Done for our 4 BSM models using
dense neural networks

32

BSM efficiency

1071

1072

1073

/)

1074
— CIf A—»4/ (area = 0.98)
— CIf LQ (area = 0.94)

107° —— CIf h»1T (area = 0.90)
—— CIf h*>1v (area = 0.97)

A 50 SM evts/day
107° -6 | \—5 \—4 \—3 \—2 \—1
10 10 10 10 10 10

SM efficiency




Performances

@ Evaluate general discrimination

power by ROC curve and area 1o-1 .
under curve (AUC) "AUC = 0.91 (0.84)
10—2 LAOUC = 0.85 (0.79)
@ Clearly worse than supervised ] 'AUC = 0.75 (0.72)
:% 10-3 fl\_u_gi 0.92 (0.91)
@ but not so far =
- 10~ : | Supervised Classifier (BDT)
@ Fixing SM acceptance rate at 50 | | | Avdlerea=098)
| — LQ (area = 0.94)
events/day 10-5 ' - h-TT (area = 0.90)
_ — h*-Ttv (area = 0.97)
. . . I R E 50 SM evts/day
@ competitive results considering 10-6 . | | | |
: 107° 107> 1074 1073 1072 1071 10°
UnSUperVISed nature of the SM efficiency
algorithm S | mwopesn
HHEFC)| com
33 R
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Back to our example

X(-,21)
@ We train a VAE on a cocktail of SM rrE—
events (weighted by xsec) | —
u(4) ‘ g, (4) Encoder n2 ( -, 50
@ ENCODER: 21 inputs, 2 hidden layers \/\ 0 (-] [H (-9
— 4Dim latent space @foi;ﬁﬁ)/
@ hidden nodes = 4 and o of the (- )
Gaussian pdfs describing the hidden EESeyR—

variables

Decoder h2 ( -, 50)

a(-,21) | al-,17) || a,(-,10)

@ DECODER: from a random sample in

the 4D — 2 hidden | . T

€ 4D space idden layers

parameters describing the shape of mer }
the 21Dim input space

35
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The Loss Function

@ Loss function described as the
sum of two terms (scaled by a Losstot = LoSSreco + BDKL

tuned A parameter that makes
the two contribution
numerically similar) LOSSreco = —7 Z In (P

.”L' ‘ 1, X2, Oég))

@ Reconstruction loss: = —— Zln ( (2, | o', al?, a§9)>
likelihood of the input 21Dim
point, given the shape

1 . .
parameters reconstructed Dxi = = Dxu (N(pt,0l) || N(up,op))

from it L
2
| 1 A O op
@® KL loss: distance between ~ ok £ (“fﬂ(’/) + ( - ) + 1o i 1
the pdf in the latent space - g

and an nDim Gaussian | p

36




Standard Model encodin

First post-training check consists in verifying = b MIRNRRRE
encoding-decoding capability, comparing input = . : s \

T T T T T T T T T T

0 100 200 300 400 500 0 200 400 600 800 0 20 40 60 80 100 120 140

data to those generated sampling from e B e e RS-

10° 10°
- —~

decoder ) R il

104

h) .
100 B B
10° 10° % *
. o "
"e L)
, . , : . . 0" g , : . ; : , , 102 1+ , . , , . s
] 20 40 60 80 100 0 20 ) 60 80 100 120 140 0 20 40 60 80 100
LepPt - SMMix LeplsoCh - SMMix LeplsoGamma - SMMix
n
g + input 1] + input * + input
(;El:;()na e a reemen () s;‘,rV‘e WI Slllii 300000 . ~  spdf ~ spaf 100 bl K
, 250000 < 10 3 10
% ;
200000 - . -
[ L X wios
150000 " .
10° 4 & *
100000 e 10°
. -
\d .
50000 % 102
01 ommemens® .\“‘ 10 . 13
0 20 4 6 & 100 120 140 160 00 01 02 03 04 000 005 010 015 020 025 030 035 040
LeplsoNeu - SMMix METp - SMMix METo - SMMix
7 + input 100000 ’\ + input o~ + input
- - 1ot - spdf & ~ sdf | 120000 o -~ spdf
80000 . ‘i e | 2
| . ] b4 %
10° ° . 100000 s s
. " . N
| - 60000 t . 80000 A .
10% ~ . . 3 s
N . . : 3
. 40000 . S €000 H )
u 10° N . 2 e
. s ‘,' 40000 k3 -
20000 s s = -
, 10% s % 20000 2 %
s 'I’
100 ] 0 -/ 0 \—

- 000 005 010 015 020 025 030 035 -100 50 0 50 100 -100 75 -50 -25 0 25 50 75 100
E i n O m E i I d eteCt I O n MT - SMMix nMu - SMMix njets - SMMix
100000
+ input [r—— + input -t + input
~ spf | 1750000 ~ spar | 1750000 ~ spdf
g0000 1500000 E——— — 1500000
1250000
€0000 1250000
1000000 1000000
40000 .
750000 750000 R —
500000
[ ] 20000 500000
250000
250000
o I 0 ——
0 25 s 75 100 125 150 175 05 00 05 10 15 20 25 0 1 2 3 1 5
bjets - SMMix nEle - SMMix LepCharge - SMMix
2500000 - - 1900000 .
—_— + input | 1750000 —— + input "+ input
e eS a O a y e eC Or O a O a y =S == N
I l I l I l 1850000
I I I I I I 2000000 1500000
1800000
1250000
1500000
- - - 1000000 1750000
r I r I r I r I 1700000
ete Ctl O rate I t e OSS u Ctl O o e
1650000
500000 500000
1600000
— 250000
-05 00 05 10 15 20 25 30 35 -05 00 05 10 15 20 25 -1.00 -0.75 -0.50 -0.25 000 025 050 075 100
LeplsEle - SMMix nChHad - SMMix nNeuHad - SMMix
— = input 16000 + input 35000 + input
~  spdf ~  spdf ~  spdf "
- 1850000 P 14000 P 30000 » ..
12000
1800000
25000 European
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1750000 20000
000 Research
1700000 15000
6000 .
Council
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Defining anomaly

@ Anomaly defined as a p-value threshold on a given test statistics

@ Loss function an obvious choice

@ Some part of a loss could be more sensitive than others

@ We tested different options and found the total loss to behave better

Probability
= = =
o o o
& I o

-
o
%

-

o
o
o

101
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Performances

100-
@ Evaluate general discrimination
power by ROC curve and area -1l
under curve (AUC)
| . 1072
@ clearly worse than supervised =
£ 107 AUC = 0.91
3 = 0.91 (0.84)
@ but not so far = L0
S 1 o-al/ S T AUC = 0.85 (0.79)
o S 0,
® Fixing SM acceptance rate at 50 Sl — 0 075 (0.72)
events/day 10-5L A=t h v
Sl — AUC = 0.92 (0.91)
fit it der [ N B TR 1000 SM evts/month
mpetitive r nsiderin ) . . . .
® Compe .e esulls consiae g 10 10-® 10> 10~*% 103 10=¢% 107t 10°
unsupervised nature of the SM efficiency
algorithm
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Performances

@ Small efficiency but still much larger than for SM processes

@ Allows to probe 10-100 pb cross sections for reasonable amount of
collected signal events

xsec for 100 evit/month
[pb]

Process Efficiency for ~30 evt/day

xsec for S/B~1/3 [pb]
a—40

LQ—Tb
h—1T

h+— TV
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