Autoencoders for jet physics

Thong Nguyen

Maurizio Pierini

Olmo Cerri

Autoencoders

- Autoencoders are networks with a typical "bottleneck" structure, with a symmetric structure around it
 - lacktriangle They go from $\mathbb{R}^n \to \mathbb{R}^n$
 - They are used to learn the identity function as $f^{-1}(f(x))$

X Encoder Compressed representation Decoder X'

where $f: \mathbb{R}^n \to \mathbb{R}^k$ and $f^{-1}: \mathbb{R}^k \to \mathbb{R}^n$

 Autoencoders are essential tools for unsupervised studies

Dimensional Reduction

- Autoencoders can be seen as compression algorithms
 - The n inputs are reduced to k quantities by the encoder
 - Through the decoder, the input can be reconstructed from the k quantities
- As a compression algorithm, an auto encoder allows to save (n-k)/n of the space normally occupied by the input dataset

Clustering

- The auto encoder can be used as a clustering algorithm
 - Alike inputs tend to populate the same region of the latent space
 - Different inputs tend to be far away

Training an Autoencoder

- AEs are training minimizing the distance between the inputs and the corresponding outputs
- The loss function represents some distance metric between the two
 - e.g., MSE loss
- A minimal distance guarantees that the latent representation + decoder is enough to reconstruct the input information

Anomaly detection

- Once trained, an autoencoder can reproduce new inputs of the same kind of the training dataset
 - The distance between the input and the output will be small
- If presented an event of some new kind (anomaly), the encoding-decoding will tend to fail
 - In this circumstance, the loss (=distance between input and output) will be bigger

Convolutional Autoencoders

- Conv Autoencoders take images as input
- Through Conv and MaxPooling, they reduce it to some latent-space 1D array
- This 1D array is expanded using the inverse of the encoder functions
 - ConvTranspose (aka "Deconvolution")

		'		~	
1	2	 0	0	0	0
3	4	3	0	4	0
		0	0	0	0

Output: 4 x 4

Input: 2 x 2

Nearest Neighbor

		1	-		-
1	2		1	1	2
3	4		3	3	4
			3	3	4

Input: 2 x 2

Output: 4 x 4

4

European

Research

• Upsampling

Example: Jet autoencoders

- Idea applied to tagging jets, in order to define a QCD-jet veto
- Applied in a BSM search (e.g., dijet resonance) could highlight new physics signal
- Based on image and physicsinspired representations of jets

Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

Recurrent Autoencoders

- When given as input a sequence, the AE needs a recurrent layer to process it
 - The encoder is similar to the classifier we already saw
 - What about the decoder? This is where the serial output of the RNN comes in

Variational Autoencoders

Variational Autoencoders

- We investigated variational autoencoders
- Unlike traditional AEs, VAEs try to associate a multi-Dim pdf to a given image
 - can be used to generate new examples
 - comes with a probabilistic description of the input
 - tends to work better than traditional AEs

The Loss Function

- Loss function described as the sum of two terms (scaled by a tuned λ parameter that makes the two contribution numerically similar)
 - Reconstruction loss (e.g. MSE(output-input))
 - KL loss: distance between Gaussian pdfs (assumption on prior here)
 - Why Gaussian? KL loss can be written analytically

$$Loss_{Tot} = Loss_{reco} + \beta D_{KL}$$

$$D_{KL} = \frac{1}{k} \sum_{i} D_{KL} \left(N(\mu_z^i, \sigma_z^i) \mid\mid N(\mu_P, \sigma_P) \right)$$

$$= \frac{1}{2k} \sum_{i,j} \left(\sigma_P^j \sigma_z^{i,j} \right)^2 + \left(\frac{\mu_P^j - \mu_z^{i,j}}{\sigma_P^j} \right)^2 + \ln \frac{\sigma_P^j}{\sigma_z^{i,j}} - 1$$

Clustering with VAE

In the clustering example, the different populations are forced on sums of Gaussian distributions

This gives more regular shape formthe clusters

A Generative model

- Now that we have a probabilistic description of the latent space, we can sample points from it
- These points, propagated through the decoder, will provide new examples
- We have defined a generative model

More effective with sequential data

(a) VAE training graph using a dilated CNN decoder.

(b) Digram of dilated CNN decoder.

the food was good but the service was horrible. took forever to get our food, we had to ask
twice for our check after we got our food . will not return .
the food was good, but the service was terrible took forever to get someone to take our drink
order. had to ask 3 times to get the check. food was ok, nothing to write about.
came here for the first time last night . food was good . service was a little slow . food was just
ok.
food was good, service was a little slow, but the food was pretty good. i had the grilled chicken sandwich and it was really good. will definitely be back!

food was very good, service was fast and friendly. food was very good as well. will be back!

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017

More effective with sequential data

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

More effective with sequential data

Gómez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01925.

Summary

- Autoencoders are NNs for unsupervised problems
 - Clustering
 - Dimensional reduction
 - Anomaly detection
- When adding variational functionality
 - Can be used as generators
 - Can improve robustness (e.g., anomaly detection performance)
- Could be relevant to reduce model dependence in searches for new physics at the LHC

European

Backup

Example: Data Quality Monitoring

- When taking data, >1 person watches for anomalies in the detector 24/7
- At this stage no global processing of the event
- Instead, local information from detector components available (e.g., detector occupancy in a certain time window)

Example: Data Quality Monitoring

- Given the nature of these data,
 ConvNN are a natural analysis tool.
 Two approaches pursued
 - Classify good vs bad data. Works if failure mode is known
 - Use autoencoders to assess data "typicality". Generalises to unknown failure modes

A. Pol et al., to appear soon

Pol, G. Cerminara, C. Germain, MP and A. Seth arXiv:1808.00911

Example: Data Quality Monitoring

- Given the nature of these data, ConvNN are a natural analysis tool. Two approaches pursued
 - Classify good vs bad data. Works if failure mode is known
 - Use autoencoders to assess data "typicality". Generalises to unknown failure modes

European

Research

A. Pol et al., to appear soon

Autoencoders for New Physics searches

Supervised search for new physics

- Searches for new physics are typically supervised
 - One knows what to look for
 - MC simulation provides labelled datasets to model the signal and the background
 - The analysis is performed as hypothesis testing
- The bias (what to look for) enters very early in the game (often already at trigger level). What if we are looking in the wrong place?

Unsupervised search for new physics

- One can use Autoencoders to relax the assumption on the nature of new physics
 - Train on standard events
 - Run autoencoder on new events
 - Consider as anomalous all events with loss > threshold

Running in the trigger

- One needs the unsupervised algorithm to run before data are discarded
- This would allow to possibly notice recurrent patterns across events -> suggest explanations (new models) -> runs a classic supervised search (+ dedicated trigger) on the data to come

Our use case: l+X@HLT

- Consider a stream of data coming from L1
 - Passed L1 because of 1 lepton (e,m) with pT>23 GeV
 - At HLT, very loose isolation applied
 - Sample mainly consists of W, Z, tt & QCD (for simplicity, we ignore the rest)

Standard Model processes						
Process	Acceptance	Trigger	Cross	Events	Event	
		efficiency	section [nb]	fraction	/month	
\overline{W}	55.6%	68%	58	59.2%	110M	
QCD	0.08%	9.6%	$1.6 \cdot 10^{5}$	33.8%	63M	
Z	16%	77%	20	6.7%	12M	
$t ar{t}$	37%	49%	0.7	0.3%	0.6M	

 We consider 21 features, typically highlighting the difference between these SM processes (no specific BSM signal in mind)

- The isolated-lepton transverse momentum p_T^{ℓ} .
- The three isolation quantities (CHPFISO, NEUPFISO, GAMMAPFISO) for the isolated lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.
- The lepton charge.
- A boolean flag (ISELE) set to 1 when the trigger lepton is an electron, 0 otherwise.
- S_T , i.e. the scalar sum of the p_T of all the jets, leptons, and photons in the event with $p_T > 30$ GeV and $|\eta| < 2.6$. Jets are clustered from the reconstructed PF candidates, using the FASTJET [23] implementation of the anti- k_T jet algorithm [24], with jet-size parameter R=0.4.
- The number of jets entering the S_T sum (N_J) .
- The invariant mass of the set of jets entering the S_T sum (M_J) .
- The number of these jets being identified as originating from a b quark (N_b) .
- The missing transverse momentum, decomposed into its parallel $(p_{T,\parallel}^{\text{miss}})$ and orthogonal $(p_{T,\perp}^{\text{miss}})$ components with respect to the isolated lepton direction. The missing transverse momentum is defined as the negative sum of the PF-candidate p_T vectors:

$$\vec{p}_T^{\text{miss}} = -\sum_q \vec{p}_T^{\ q} \ . \tag{2}$$

• The transverse mass, M_T , of the isolated lepton ℓ and the E_T^{miss} system, defined as:

$$M_T = \sqrt{2p_T^{\ell} E_T^{\text{miss}} (1 - \cos \Delta \phi)} , \qquad (3)$$

with $\Delta \phi$ the azimuth separation between the lepton and \vec{p}_T^{miss} vector, and E_T^{miss} the absolute value of \vec{p}_T^{miss} .

- The number of selected muons (N_{μ}) .
- The invariant mass of this set of muons (M_{μ}) .
- The total transverse momentum of these muons $(p_{T,TOT}^{\mu})$.
- The number of selected electrons (N_e) .
- The invariant mass of this set of electrons (M_e) .
- The total transverse momentum of these electrons $(p_{T,TOT}^e)$.
- The number of reconstructed charged hadrons.
- The number of reconstructed neutral hadrons.

Our use case: l+X@HLT

- Consider a stream of data coming from L1
 - Passed L1 because of 1 lepton (e,m) with pT>23 GeV
 - At HLT, very loose isolation applied
 - Sample mainly consists of W, Z, tt & QCD (for simplicity, we ignore the rest)

Standard Model processes						
Process	Acceptance	Trigger	Cross	Events	Event	
		efficiency	section [nb]	fraction	/month	
\overline{W}	55.6%	68%	58	59.2%	110M	
QCD	0.08%	9.6%	$1.6 \cdot 10^{5}$	33.8%	63M	
Z	16%	77%	20	6.7%	12M	
t ar t	37%	49%	0.7	0.3%	0.6M	

• We consider 21 features, typically highlighting the difference between these SM processes (no specific BSM signal in mind)

 $--t\bar{t}$

100

Neutral Had number

Standard Model AE

- We train a VAE on a cocktail of SM events (weighted by xsec)
- ENCODER: 21 inputs, 2 hidden layers
 → 4Dim latent space
- DECODER: from a random sample in the 4D space → 2 hidden layers → 21 outputs

Decoder h1 (- , 50)

Decoder h2 (- , 50)

Some BSM benchmark

- We consider four BSM benchmark models, to give some sense of VAEs potential
 - leptoquark with mass 80 GeV, LQ→bτ
 - A scalar boson with mass 50 GeV,
 a→Z*Z*→4ℓ
 - A scalar scalar boson with mass 60 GeV,
 h→ττ
 - A charged scalar boson with mass 60 GeV, h±→τv

•							
	BSM benchmark processes						
Process	Acceptance	Trigger	Total	Cross-section			
		efficiency	efficiency	100 events/month			
$h^0 \to \tau \tau$	9%	70%	6%	335 fb			
$h^0 o au u$	18%	69%	12%	163 fb			
$LQ \to b\tau$	19%	62%	12%	166 fb			
$a \to 4\ell$	5%	98%	5%	436 fb			

Defining anomaly

- Anomaly defined as a p-value threshold on a given test statistics
 - Loss function an obvious choice
 - Some part of a loss could be more sensitive than others
 - We tested different options and found the total loss to behave better

Benchmark comparison

- VAE's performances benchmarked against supervised classifiers
- For each BSM model
 - take same inputs as VAE
 - train a fully-supervised classifier to separate signal from background
 - use supervised performances as a reference to aim to with the unsupervised approach
 - Done for our 4 BSM models using dense neural networks

Performances

- Evaluate general discrimination power by ROC curve and area under curve (AUC)
 - clearly worse than supervised
 - but not so far
- Fixing SM acceptance rate at 50 events/day
 - competitive results considering unsupervised nature of the algorithm

Variational Autoencoders for particle physics

Back to our example

- We train a VAE on a cocktail of SM events (weighted by xsec)
- ENCODER: 21 inputs, 2 hidden layers
 - → 4Dim latent space
 - hidden nodes = μ and σ of the Gaussian pdfs describing the hidden variables
- DECODER: from a random sample in the 4D space → 2 hidden layers → parameters describing the shape of the 21Dim input space

European Research

The Loss Function

- Loss function described as the sum of two terms (scaled by a tuned λ parameter that makes the two contribution numerically similar)
 - Reconstruction loss: likelihood of the input 21Dim point, given the shape parameters reconstructed from it
 - KL loss: distance between the pdf in the latent space and an nDim Gaussian

$$Loss_{Tot} = Loss_{reco} + \beta D_{KL}$$

$$Loss_{reco} = -\frac{1}{k} \sum_{i} \ln \left(P(x \mid \alpha_1, \alpha_2, \alpha_3) \right)$$
$$= -\frac{1}{k} \sum_{i,j} \ln \left(f_j(x_{i,j} \mid \alpha_1^{i,j}, \alpha_2^{i,j}, \alpha_3^{i,j}) \right)$$

$$D_{KL} = \frac{1}{k} \sum_{i} D_{KL} \left(N(\mu_z^i, \sigma_z^i) \mid \mid N(\mu_P, \sigma_P) \right)$$

$$= \frac{1}{2k} \sum_{i,j} \left(\sigma_P^j \sigma_z^{i,j} \right)^2 + \left(\frac{\mu_P^j - \mu_z^{i,j}}{\sigma_P^j} \right)^2 + \ln \frac{\sigma_P^j}{\sigma_z^{i,j}} - 1$$

Standard Model encoding

- First post-training check consists in verifying encoding-decoding capability, comparing input data to those generated sampling from decoder
- Reasonable agreement observed, with small discrepancy here and there
- NOTICE THAT: this would be a suboptimal event generator, but we want to use it for anomaly detection
 - no guarantee that the best autoencoder is the best anomaly detector (no anomaly detection rate in the loss function)
 - pros & cons of an unsupervised/ semisupervised approach

Defining anomaly

- Anomaly defined as a p-value threshold on a given test statistics
 - Loss function an obvious choice
 - Some part of a loss could be more sensitive than others
 - We tested different options and found the total loss to behave better

Performances

- Evaluate general discrimination power by ROC curve and area under curve (AUC)
 - clearly worse than supervised
 - but not so far
- Fixing SM acceptance rate at 50 events/day
 - competitive results considering unsupervised nature of the algorithm

Performances

- Small efficiency but still much larger than for SM processes
- Allows to probe 10-100 pb cross sections for reasonable amount of collected signal events

Process	Efficiency for ~30 evt/day	xsec for 100 evt/month [pb]	xsec for S/B~1/3 [pb]
a→4ℓ	2.8 · 10-3	7.1	27
LQ→τb	6.5 - 10-4	31	120
h→ττ	3.6 · 10-4	56	220
h±→τv	1.2 · 10 ⁻³	17	67

