

Introduction to Allen

Dorothea vom Bruch

July 2019

1st Real Time Analysis Workshop

Institut Pascal, Université Paris-Saclay, France

2

LHCb: Real time event selection

High Level Trigger 1 (HLT1)

● Perform full charged particle track reconstruction

● Small number of inclusive single or two-track
selections

→ Efficiently select events that contain particles
of interest for LHCb

● Reduce event rate by roughly factor 30

→ very compute intensive!

● Baseline solution:

use filter farm of 1000 PCs for HLT1 & HLT2

Proton bunch crossing = event

30 MHz

~1 MHz

3

The Allen project

● Fully standalone software project: https://gitlab.cern.ch/lhcb-parallelization/Allen

● Compact, scalable and modular framework built for running HLT1 on GPUs

● Only requirements: a C++17 compliant compiler & CUDA v10.0

● Configurable static sequences of algorithms

● Pipelined stream sequence → hide memory copies to and from the GPU

● Custom memory manager → no dynamic allocations

● Built-in physics validation

● Optional compilation with ROOT1 for plot generation

● Continuous integration: throughput and algorithm breakdown checked for every merge request

● Project started in February 2018

● Roughly 14 part-time developers, 2 almost full-time

● R&D intended for Run 3 (2021)
1 ROOT data analysis framework: https://root.cern.ch/
More details on core software: Talk by D. Campora at ACAT

https://gitlab.cern.ch/lhcb-parallelization/Allen
https://root.cern.ch/
https://indico.cern.ch/event/708041/contributions/3276185/attachments/1806182/2948757/main.pdf

4

HLT1 on GPUs

● Run thousands of events in parallel, using:

• Blocks: Events under execution

• Threads: Intra-event parallelism

● All data is stored in Structure of Arrays (SoA) data layout

● Memory accesses are contiguous

● All algorithms have been (re-)designed for the GPU architecture

● Data locality is preserved within algorithms

● Using single precision only

● Low memory I/O requirements, use PCIe connection

● Memory transfers are hidden by calculations: one CUDA stream launched

with one CPU thread

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

copy

execute

copy

execute

time

stream 1

stream 1

stream 1

stream 1

stream 1

stream 1

stream 2

stream 2

5

Recurrent tasks of HLT1

Raw data decoding

● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate
system

● Parallelizable over events, all subdetectors and readout units

Track reconstruction

● Consists of two steps:

• Pattern recognition: Which hits belong to which track? → Huge combinatorics

• Track fitting: Done for every track

● Parallelizable over events, combinations of hits, and tracks

Vertex finding

● Where did proton-proton collisions take place?

● Where did particles decay within the detector volume?

● Parallelizable over events, combinations of tracks

f(x) = … +/- ...

6

By

LHCb HLT1 elements

Velo

● Decode raw banks

● Clustering of pixel hits

● Track reconstruction

● Primary vertex reconstruction

UT

● Decode raw banks

● Track reconstruction

SciFi

● Decode raw banks

● Track reconstruction

Muons

● Decode raw banks

● Match hits to tracks

Kalman filter

● Track fit

Selections

● 1-track selection

● 2-track selection

● Based on p, pt, displacement,

vertex criteria and muon identificationFramework TDR for the LHCb Upgrade: CERN-LHCC-2012-007

y
z

https://inspirehep.net/record/1614076/?ln=en

7

Physics performance checked within Allen

Track reconstruction efficiency for
tracks passing through the Velo, UT

and SciFi detectors,
Bs→PhiPhi events

LHCb simulation, GPU R&D

More details on algorithms: Talk by D. vom Bruch at PASC

LHCb simulation, GPU R&D

Values given in %

Tuned for 1 MHz output rate (factor 30 reduction in event rate)

https://ssl.linklings.net/conferences/pasc/pasc19/slides/msa170s2.pdf

8

Throughput on various GPUs

Throughput of the full HLT1 sequence, taken from our continuous integration output

The system can run on 500 consumer / scientific GPU cards

LHCb simulation, GPU R&D

9

Hide host - device data transmission

● Host - device data transmission via PCIe takes at most 12% of the computation time

→ Data copies can be hidden using different pipelines (streams)

LHCb simulation, GPU R&D

10

Allen on various GPUs

LHCb simulation, GPU R&D

● Software scales to newer generations of cards

● Can expect increasing performance with the next generations

11

Scheduler

● HLT1 consists of currently 70 algorithms

● Allen is scalable for when new features are added

● Average developer needs little framework-specific knowledge

● Sequence of algorithms is configured at compile time in Allen

● Simply adding / removing a line in a configuration file

12

Memory manager

● Recent GPUs have O(10) GB memory available → scarce resource

● Memory allocation is a blocking operation → cannot be done on different streams in parallel

● In Allen, allocate large memory buffer for every stream before event processing

● A custom memory manager assigns memory segments on demand

● Runtime dependencies determined at compilation time

● For 70 algorithms in the sequence, compilation takes less than five minutes

● All algorithms are designed to use as little memory as possible

● For 1000 events, need 340 MB at maximum

13

Event Model

● Hits: SoA; allocated size corresponds exactly to the number of hits / clusters in the sub-detector; used
for output of clustering / decoding and input for pattern recognition; specific for every sub-detector;
lives until consolidation step

● TrackHits: used for track candidates; contains indices of hits in the SoA, additional information (i.e.
qop) if necessary; specific for every sub-detector; lives only during the pattern recognition and
consolidation steps of a sub-detector

● Consolidated tracks: after every pattern recognition step: only hits belonging to a track remain in
memory together with arrays of track-specific variables, i.e. qop, state; lives after the pattern-
recognition step for as long as the track information is needed

● Prefix sum used to calculate total # of hits before full decoding / clustering, # of tracks, # of hits on all
tracks for n events

14

Hit container: Velo

● On GPU: 32 threads read same data member (possibly of different index) at the same time

● Tracking algorithm: don’t need all hit variables at the same time

→ Use structure of arrays for hit variables

● Velo: pixel detector

● Pre-calculate number of hits in event during decoding / clustering step

● No gaps between sectors / zones

x
0

x
1

x
2

x
N-1... x

N
x

N+1
x

N+2
x

N+M-1...
y

0y
1

y
2

y
N-1

y
N

y
N+1

y
N+2

y
N+M-1

z
0

z
0

z
0 ... z

N-1
z

N
z

N+1
z

N+2
z

N+M-1

id
0

id
1

id
2

id
N-1... id

N
id

N+1
id

N+2
id

N+M-1

...

...

...

...

...

...

Example: Velo hits
 module 0 has N hits
 module 1 has M hits

15

Hit container: UT & SciFi

● Same layout as for the Velo hits

● Variables used for UT hits:

silicon strip detector

● Variables used for SciFi hits:

scintillating fibre detector

● Obtain w, dxdy, dzdy, endPointY, yMin, yMax, LHCbID, planeCode from channel, assembled_datatype
and the geometry information

 float* yBegin;
 float* yEnd;
 float* zAtYEq0;
 float* xAtYEq0;
 float* weight;
 uint8_t* planeCode;
 uint32_t* LHCbID;

 float* x0;
 float* z0;
 float* endPointY;
 uint32_t* channel;
 uint32_t* assembled_datatype;

16

TrackHits for pattern recognition

● For candidate tracks in pattern recognition algorithms

● Hit indices: local index of hit within one event stored as short

● Size: 26 hits for Velo, 4 for UT, 12 for SciFi

● Number of tracks not know before pattern recognition

 → safe upper limit is used for allocating the memory

● This could be changed to estimating the number of tracks based on the number of hits in an event

17

Tracks after pattern recognition

● After every pattern recognition step: consolidate hits SoA of respective sub-detector to keep only hits
that are part of a track

● Tracks object: pointers to hit array, state array, track offset array, track hit offset array, qop...

Track i has (o
(i+1)

-o
i
) hits

x
0

x
5

x
13

x
20... x

3
x

11
x

20
x

33...
y

0y
5

y
13

y
20

y
3

y
11

y
20

y
33

z
0

z
5

z
13 ... z

20
z

3
z

11
z

20
z

33

id
0

id
5

id
13

id
20... id

3
id

11
id

20
id

33

...

...

...

...

...

...

Track j has (o
(j+1)

 – o
j
) hits

Hit array

x
0

x
i

x
j

y
0

y
i

y
j

z
0

z
i

z
j

tx
0

tx
i

tx
j

ty
0

State array

ty
i

ty
j

......

...

...

...

... Track hit offset array
for M tracks in all events,
n

k
 hits on track k

o
j

o
i

0 ... ∑
k=0

M−1

nk

Track offset array
for P events, m

p
 tracks in

Event i, offset:

 q
j

q
i

0 ... ∑
p= 0

P−1

m p

q i=∑
p=0

i−1

m p

o i=∑
k=0

i−1

nk

M

18

Track from several sub-detectors

● Same style track container for every sub-detector

● Example: UT track includes index to Velo track

→ can use Velo track container to look up hits / states

● Use number_of_events and current_event_number to access correct tracks

Struct UTTracks {
uint* track_offsets;
uint* track_hit_offsets;
uint* velo_track_indices;
float* qop;

};

UT::Consolidated::Hits ut_hits_on_tracks;
UT::Consolidated::States ut_states;

19

How to add an algorithm in Allen

● Follow instructions in readme:
https://gitlab.cern.ch/lhcb-parallelization/Allen/blob/master/contributing.md

https://gitlab.cern.ch/lhcb-parallelization/Allen/blob/master/contributing.md

20

Running on openlab server (CERN account)

● ssh username@olquanta1.cern.ch

● Setup as recommended in Allen readme:

source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_95 x86_64-centos7-gcc7-opt

export PATH=/cvmfs/sft.cern.ch/lcg/contrib/CMake/3.14.2/Linux-x86_64/bin:$PATH

export PATH=/usr/local/cuda/bin:$PATH

● Compile with Cmake:

mkdir build

cd build

cmake -DCUDA_ARCH=COMP ..

make

● CUDA_ARCH=COMP will compile for the highest available compute architecture

● Input data location is specified with the -f option

• Bs→ Phi Phi (for efficiency studies): /data/gligorov/WorkshopDatasets/bs2phiphi/allen/bs2phiphi/

• Minimum bias data (for throughput studies):
/data/gligorov/WorkshopDatasets/minbias/allen/minbias

mailto:username@olquanta1.cern.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

