Introduction to Allen

Dorothea vom Bruch
July 2019

1°* Real Time Analysis Workshop
Institut Pascal, Université Paris-Saclay, France

CIrs LPNHE)

LHCDb: Real time event selection

40 Tb/s

1-2 Th/s

80 Gb/s

Proton bunch crossing = event

LHC bunch crossing (30MHz)

DETECTOR READOUT

REAL-TIME ALIGNMENT &
CALIBRATION

FULL RECONSTRUCTION (HLT2)

Offline reconstruction and il
26% FULL
—~
68% TURBO & e e

real-time analysis User analysis

Offline reconstruction and
associated processing

6% CALIB

High Level Trigger 1 (HLT1)
Perform full charged particle track reconstruction

Small number of inclusive single or two-track
selections

- Efficiently select events that contain particles
of interest for LHCb

Reduce event rate by roughly factor 30

- very compute intensive!

Baseline solution:

use filter farm of 1000 PCs for HLT1 & HLT2

The Allen project

« Fully standalone software project: https://gitlab.cern.ch/Ihcb-parallelization/Allen
« Compact, scalable and modular framework built for running HLT1 on GPUs

* Only requirements: a C++17 compliant compiler & CUDA v10.0

« Configurable static sequences of algorithms
* Pipelined stream sequence - hide memory copies to and from the GPU
« Custom memory manager - no dynamic allocations

« Built-in physics validation

* Optional compilation with ROOT?! for plot generation

« Continuous integration: throughput and algorithm breakdown checked for every merge request

* Project started in February 2018
* Roughly 14 part-time developers, 2 almost full-time

« R&D intended for Run 3 (2021)
YROOT data analysis framework: https://root.cern.ch/

More details on core software: Talk by D. Campora at ACAT

https://gitlab.cern.ch/lhcb-parallelization/Allen
https://root.cern.ch/
https://indico.cern.ch/event/708041/contributions/3276185/attachments/1806182/2948757/main.pdf

HLT1 on GPUs

Run thousands of events in parallel, using: - ‘: R
|

|
|| Block (0,0) [Block (0,1)

|

\

[
|] Block (0,n)
I I

Blocks: Events under execution

T \ \
* Threads: Intra-event parallelism Hoockwo | Hoockan] oo [slockwm
| | |

| | Block (1,0) | | Block (1,n)
I I

« All data is stored in Structure of Arrays (SoA) data layout

« Memory accesses are contiguous

[\
« All algorithms have been (re-)designed for the GPU architecture lBockmor | [eock@uT| o [slock(mn]
i i

« Data locality is preserved within algorithms

* Using single precision only

* Low memory I/O requirements, use PCle connection
« Memory transfers are hidden by calculations: one CUDA stream launched

with one CPU thread
copy stream 1 stream 1

Raw data

execute stream 1 stream 1

Selection decisions copy stream 1 stream 2 time

-

execute stream 1 stream 2

Recurrent tasks of HLT1

Raw data decoding

« Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate
system

* Parallelizable over events, all subdetectors and readout units .

Track reconstruction . = \
* Consists of two steps: ° \
* Pattern recognition: Which hits belong to which track? -» Huge combinatorics f(x) = ... +/-

Track fitting: Done for every track

* Parallelizable over events, combinations of hits, and tracks
Vertex finding

* Where did proton-proton collisions take place? 5

i

N

* Where did particles decay within the detector volume?

O

* Parallelizable over events, combinations of tracks

HH‘HH‘\H\‘HH‘HH‘HW‘\

©
o

B¢ ok S gl =

N\

j
-+ /
4

jw\ ‘\{{1[{\11{[\\\{{1‘\\\ [
1 2 5 4 5 6 7 8

LHCb HLT1 elements

/ Velo \

 Decode raw banks Side View

* Clustering of pixel hits

Tracker

« Track reconstruction X 7 7 i

\:_ Primary vertex reconstruction / |

)

uT

 Decode raw banks

e Track reconstruction

\V

Ecar, HCAL

SciFi ~ RICH2

il

SciFi
* Decode raw banks

e Track reconstruction

y S upgrade

Z
Kalman filter

* Track fit

Framework TDR for the LHCb Upgrade: CERN-LHCC-2012-007

Muons
Decode raw banks

Match hits to tracks

/~ Selections
* 1-track selection
» 2-track selection

- Based on p, p,, displacement,

\ vertex criteria and muon identiﬁcation/

~

https://inspirehep.net/record/1614076/?ln=en

Physics performance checked within Allen

efficiency

coocooooog
—_ N L B Y N O

[a—y

o

Track reconstruction efficiency for
tracks passing through the Velo, UT

and SciFi detectors,
Bs—PhiPhi events

*
2

-’1++*+*"+++*+*++*“+++++H++++++ ﬁ++

..m:; *mfﬁiﬁ * f',# + ?
f1

LHCb simulation, GPU R&D

I i efficiency, not electrons
i efficiency, electrons
- p distribution, not electrons
Rt I ‘ ‘ . ‘ ‘ | I | I i)
0 50 100
p [MeV]

x10°

Tuned for 1 MHz output rate (factor 30 reduction in event rate)

Signal GEC TIS-OR- TOS TOS GEC x TOS
B = K - | 88 81 77 67
B — K*%te~ | 84 69 60 50
B® = ¢¢ 85 82 78 66
DI > KTK—n | 84 43 35 29
7 =t 75 90 89 67

Values given in %

More details on algorithms: Talk by D. vom Bruch at PASC

https://ssl.linklings.net/conferences/pasc/pasc19/slides/msa170s2.pdf

Throughput on various GPUs

Throughput of the full HLT1 sequence, taken from our continuous integration output

Tesla V10@-PCIE-32GE || 57.04 kHz
GeForce RTX 2020 Ti | 56.97 kiz
Tesla T4 NN AN 27.86 kHz
GeForce GTX 1080 Ti | 20.59 kHz
GeForce GTX TITAN X | HEEEEEE 13.86 kHz
GeForce GTX 1060 6GE | 9.25 kHz
GeForce GTX 980 | 9.02 kHz
GeForce GTX 788 Ti | -) _ 5.88 kHz
GeForce GTX GEB@ |. LHCb Slmulatlon, GPU R&D 3.17 kHz
GeForce GTX 670 || 2.92 kHz

i

4]

The system can run on 500 consumer / scientific GPU cards

Hide host - device data transmission

LHCb simulation, GPU R&D B device to host
host to device
H throughput
10 4 [50000

u
= 8- 40000 ‘E
= g
£ 3
=]]
c ")
2 5
c B4 - 30000 3
= g
& b
e ©
5 2
t: L
g 4 - 20000 @
w o

£

=

2 | 10000
0- T
CPU offload No CPU offload CPU offload, No CPU offload,
validation validation

* Host - device data transmission via PCle takes at most 12% of the computation time

- Data copies can be hidden using different pipelines (streams)

Allen on various GPUs

Trigger Rate [kHz] vs TFlops (32bit)

80
LHCb simulation, GPU R&D
Telsa V100 32GB
60 %
@ @
RTX 2080 Ti
N
p
=
[1]
® 40
(=
o fesla T4
iy ol
= e
GTX 1080 Ti
@
20 GTX Titan X
GTX 1060 67GB980 Py
GTX780Ti
GTX 680 S
[]
®
0
a4 6 8 10 12 14

GPU Theoretical 32 bit TFLOPS
« Software scales to newer generations of cards

« Can expect increasing performance with the next generations

Scheduler

* HLT1 consists of currently 70 algorithms

* Allen is scalable for when new features are added

* Average developer needs little framework-specific knowledge
* Sequence of algorithms is configured at compile time in Allen

* Simply adding / removing a line in a configuration file

SEQUENCE_T(
velo_estimate_input_size_t,
prefix.sum_velo_clusters_t,
velo_masked_clustering_t,
velo_calculate_phi_and_sort_t,
velo_fill_.candidates_t,
velo_search_by_triplet_t,
velo_weak_tracks.adder_t)

11

Memory manager

* Recent GPUs have O(10) GB memory available - scarce resource

« Memory allocation is a blocking operation = cannot be done on different streams in parallel

* In Allen, allocate large memory buffer for every stream before event processing
* A custom memory manager assigns memory segments on demand
* Runtime dependencies determined at compilation time

* For 70 algorithms in the sequence, compilation takes less than five minutes

« All algorithms are designed to use as little memory as possible

* For 1000 events, need 340 MB at maximum

12

Event Model

« Hits: SoA; allocated size corresponds exactly to the number of hits / clusters in the sub-detector; used
for output of clustering / decoding and input for pattern recognition; specific for every sub-detector;
lives until consolidation step

* TrackHits: used for track candidates; contains indices of hits in the SoA, additional information (i.e.
qop) if necessary; specific for every sub-detector; lives only during the pattern recognition and
consolidation steps of a sub-detector

+ Consolidated tracks: after every pattern recognition step: only hits belonging to a track remain in
memory together with arrays of track-specific variables, i.e. gop, state; lives after the pattern-
recognition step for as long as the track information is needed

* Prefix sum used to calculate total # of hits before full decoding / clustering, # of tracks, # of hits on all
tracks for n events

13

Hit container: Velo

On GPU: 32 threads read same data member (possibly of different index) at the same time

Tracking algorithm: don’t need all hit variables at the same time

- Use structure of arrays for hit variables

Velo: pixel detector

Xo X1 X2 e XN—l XN XN+1 XN+2 e XN+M—1 E | Velo hi

xample: Velo hits
yo yl y2 [yN-l yN yN+1 yN+2 [yN+M_1 [mOdU|e O has N hitS
Z, | Z, | Zo |l Zy 1 Zhe1] Znsa cor | Zysma | e module 1 has M hits
Ido Idl Idz IdN-l IdN IdN+1|dN+2 IdN+M-1

Pre-calculate number of hits in event during decoding / clustering step

No gaps between sectors / zones

Hit container: UT & SciFi

* Same layout as for the Velo hits

* Variables used for UT hits: float* yBegin;
. _ float* yEnd;
silicon strip detector float* zAtYEQO;

float* XAtYEQO;
float* weight;
uint8_t* planeCode;
uint32_t* LHCbID;

* Variables used for SciFi hits: float* x0;

float* z0;

float* endPointY;

uint32_t* channel;

uint32_t* assembled_datatype;

scintillating fibre detector

* Obtain w, dxdy, dzdy, endPointY, yMin, yMax, LHCbID, planeCode from channel, assembled datatype
and the geometry information

15

TrackHits for pattern recognition

* For candidate tracks in pattern recognition algorithms
* Hit indices: local index of hit within one event stored as short
* Size: 26 hits for Velo, 4 for UT, 12 for SciFi
* Number of tracks not know before pattern recognition
- safe upper limit is used for allocating the memory

« This could be changed to estimating the number of tracks based on the number of hits in an event

16

Tracks after pattern recognition

« After every pattern recognition step: consolidate hits SoA of respective sub-detector to keep only hits
that are part of a track

* Tracks object: pointers to hit array, state array, track offset array, track hit offset array, qop...

State array

Track offset array
for P events, mp tracks in M

. i—1
Eventi, offset: , — Sm, #
p=0

0 q | qa

J

P-1
2 m,
p=0

Hit array
XO X5 X13 LR X20 X3 Xll X20 X33
0 5 y13 y20 y3 y11 y20 y33
Z0 Z5 Z13 e ZZO Z3 le Z20 Z33
|do |d5 |d13 |d20 |d3 |d11 |d20 |d33
Track i has (o, ,-0) hits Trackjhas (o, -0) hits

(i+1

1

X X X

0 i j
Yo | Y, yj
z | z zj
tx o tx txj
ty, | ty, tyj

Track hit offset array
for M tracks in all events,
n, hits on track k

M1
0 o} o |...| Xn
! k=0

=0 17

Track from several sub-detectors

« Same style track container for every sub-detector
 Example: UT track includes index to Velo track
- can use Velo track container to look up hits / states

Use number of events and current_event number t0o access correct tracks

Struct UTTracks {
uint* track_offsets;
uint* track_hit_offsets;
uint* velo_track_indices;
float* gop;

Y7

UT::Consolidated: :Hits ut_hits_on_tracks;
UT::Consolidated::States ut_states;

18

How to add an algorithm in Allen

» Follow instructions in readme:
https://gitlab.cern.ch/Ihcb-parallelization/Allen/blob/master/contributing.md

19

https://gitlab.cern.ch/lhcb-parallelization/Allen/blob/master/contributing.md

Running on openlab server (CERN account)

* ssh username@olquantal.cern.ch
* Setup as recommended in Allen readme:
source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_95 x86_64—-centos7—gcc7-opt
export PATH=/cvmfs/sft.cern.ch/lcg/contrib/CMake/3.14.2/Linux-x86_64/bin:S$PATH
export PATH=/usr/local/cuda/bin:S$PATH
* Compile with Cmake:
mkdir build
cd build
cmake —-DCUDA_ARCH=COMP
make

* CUDA_ARCH=COMP Will compile for the highest available compute architecture

* Input data location is specified with the -f option

Bs— Phi Phi (for efficiency studies): /data/gligorov/WorkshopDatasets/bs2phiphi/allen/bs2phiphi/

Minimum bias data (for throughput studies):
/data/gligorov/WorkshopDatasets/minbias/allen/minbias 20

mailto:username@olquanta1.cern.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

