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LHCb: Real time event selection

High Level Trigger 1 (HLT1) 

● Perform full charged particle track reconstruction

● Small number of inclusive single or two-track 
selections 

→ Efficiently select events that contain particles 
of interest for LHCb

● Reduce event rate by roughly factor 30

→ very compute intensive!

● Baseline solution: 

use filter farm of 1000 PCs for HLT1 & HLT2

Proton bunch crossing = event

30 MHz

~1 MHz
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The Allen project

● Fully standalone software project: https://gitlab.cern.ch/lhcb-parallelization/Allen

● Compact, scalable and modular framework built for running HLT1 on GPUs

● Only requirements: a C++17 compliant compiler & CUDA v10.0

● Configurable static sequences of algorithms

● Pipelined stream sequence → hide memory copies to and from the GPU

● Custom memory manager → no dynamic allocations

● Built-in physics validation

● Optional compilation with ROOT1 for plot generation

● Continuous integration: throughput and algorithm breakdown checked for every merge request

● Project started in February 2018

● Roughly 14 part-time developers, 2 almost full-time

● R&D intended for Run 3 (2021)
1 ROOT data analysis framework: https://root.cern.ch/
More details on core software: Talk by D. Campora at ACAT

https://gitlab.cern.ch/lhcb-parallelization/Allen
https://root.cern.ch/
https://indico.cern.ch/event/708041/contributions/3276185/attachments/1806182/2948757/main.pdf
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HLT1 on GPUs

● Run thousands of events in parallel, using:

• Blocks: Events under execution

• Threads: Intra-event parallelism

● All data is stored in Structure of Arrays (SoA) data layout

● Memory accesses are contiguous

● All algorithms have been (re-)designed for the GPU architecture

● Data locality is preserved within algorithms

● Using single precision only

● Low memory I/O requirements, use PCIe connection

● Memory transfers are hidden by calculations: one CUDA stream launched 

with one CPU thread
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Recurrent tasks of HLT1

Raw data decoding

● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate 
system

● Parallelizable over events, all subdetectors and readout units

Track reconstruction

● Consists of two steps:

• Pattern recognition: Which hits belong to which track? → Huge combinatorics

• Track fitting: Done for every track

● Parallelizable over events, combinations of hits, and tracks

Vertex finding

● Where did proton-proton collisions take place? 

● Where did particles decay within the detector volume?

● Parallelizable over events, combinations of tracks

f(x) = … +/- ...
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By

LHCb HLT1 elements

Velo

● Decode raw banks

● Clustering of pixel hits

● Track reconstruction

● Primary vertex reconstruction

UT

● Decode raw banks

● Track reconstruction

SciFi

● Decode raw banks

● Track reconstruction

Muons

● Decode raw banks

● Match hits to tracks

Kalman filter

● Track fit

Selections

● 1-track selection 

● 2-track selection

● Based on p, pt, displacement, 

vertex criteria and muon identificationFramework TDR for the LHCb Upgrade: CERN-LHCC-2012-007

y
z

https://inspirehep.net/record/1614076/?ln=en
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Physics performance checked within Allen

Track reconstruction efficiency for 
tracks passing through the Velo, UT 

and SciFi detectors,
Bs→PhiPhi events

LHCb simulation, GPU R&D

More details on algorithms: Talk by D. vom Bruch at PASC

LHCb simulation, GPU R&D

Values given in %

Tuned for 1 MHz output rate (factor 30 reduction in event rate)

https://ssl.linklings.net/conferences/pasc/pasc19/slides/msa170s2.pdf
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Throughput on various GPUs

Throughput of the full HLT1 sequence, taken from our continuous integration output

The system can run on 500 consumer / scientific GPU cards

LHCb simulation, GPU R&D
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Hide host - device data transmission 

● Host - device data transmission via PCIe takes at most 12% of the computation time

→ Data copies can be hidden using different pipelines (streams)

LHCb simulation, GPU R&D
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Allen on various GPUs

LHCb simulation, GPU R&D

● Software scales to newer generations of cards

● Can expect increasing performance with the next generations
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Scheduler

● HLT1 consists of currently 70 algorithms

● Allen is scalable for when new features are added

● Average developer needs little framework-specific knowledge 

● Sequence of algorithms is configured at compile time in Allen

● Simply adding / removing a line in a configuration file
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Memory manager

● Recent GPUs have O(10) GB memory available → scarce resource

● Memory allocation is a blocking operation → cannot be done on different streams in parallel

● In Allen, allocate large memory buffer for every stream before event processing

● A custom memory manager assigns memory segments on demand

● Runtime dependencies determined at compilation time

● For 70 algorithms in the sequence, compilation takes less than five minutes

● All algorithms are designed to use as little memory as possible

● For 1000 events, need 340 MB at maximum
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Event Model

● Hits: SoA; allocated size corresponds exactly to the number of hits / clusters in the sub-detector; used 
for output of clustering / decoding and input for pattern recognition; specific for every sub-detector; 
lives until consolidation step

● TrackHits: used for track candidates; contains indices of hits in the SoA, additional information (i.e. 
qop) if necessary; specific for every sub-detector; lives only during the pattern recognition and 
consolidation steps of a sub-detector

● Consolidated tracks: after every pattern recognition step: only hits belonging to a track remain in 
memory together with arrays of track-specific variables, i.e. qop, state; lives after the pattern-
recognition step for as long as the track information is needed

● Prefix sum used to calculate total # of hits before full decoding / clustering, # of tracks, # of hits on all 
tracks for n events
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Hit container: Velo

● On GPU: 32 threads read same data member (possibly of different index) at the same time

● Tracking algorithm: don’t need all hit variables at the same time

→ Use structure of arrays for hit variables

● Velo: pixel detector

● Pre-calculate number of hits in event during decoding / clustering step

● No gaps between sectors / zones
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Hit container: UT & SciFi

● Same layout as for the Velo hits

● Variables used for UT hits:

silicon strip detector

● Variables used for SciFi hits:

scintillating fibre detector

● Obtain w, dxdy, dzdy, endPointY, yMin, yMax, LHCbID, planeCode from channel, assembled_datatype 
and the geometry information

  float* yBegin;
  float* yEnd;
  float* zAtYEq0;
  float* xAtYEq0;
  float* weight;
  uint8_t* planeCode;
  uint32_t* LHCbID;

    float* x0;
    float* z0;
    float* endPointY;
    uint32_t* channel; 
    uint32_t* assembled_datatype;   



16

TrackHits for pattern recognition

● For candidate tracks in pattern recognition algorithms

● Hit indices: local index of hit within one event stored as short

● Size: 26 hits for Velo, 4 for UT, 12 for SciFi

● Number of tracks not know before pattern recognition

 → safe upper limit is used for allocating the memory

● This could be changed to estimating the number of tracks based on the number of hits in an event 
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Tracks after pattern recognition

● After every pattern recognition step: consolidate hits SoA of respective sub-detector to keep only hits 
that are part of a track

● Tracks object: pointers to hit array, state array, track offset array, track hit offset array, qop...
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Track from several sub-detectors

● Same style track container for every sub-detector

● Example: UT track includes index to Velo track

→ can use Velo track container to look up hits / states 

● Use number_of_events and current_event_number to access correct tracks

Struct UTTracks {
uint* track_offsets;
uint* track_hit_offsets;
uint* velo_track_indices;
float* qop;

};

UT::Consolidated::Hits ut_hits_on_tracks;
UT::Consolidated::States ut_states;
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How to add an algorithm in Allen

● Follow instructions in readme:
https://gitlab.cern.ch/lhcb-parallelization/Allen/blob/master/contributing.md

https://gitlab.cern.ch/lhcb-parallelization/Allen/blob/master/contributing.md
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Running on openlab server (CERN account)

● ssh username@olquanta1.cern.ch

● Setup as recommended in Allen readme:

source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_95 x86_64-centos7-gcc7-opt

export PATH=/cvmfs/sft.cern.ch/lcg/contrib/CMake/3.14.2/Linux-x86_64/bin:$PATH

export PATH=/usr/local/cuda/bin:$PATH

● Compile with Cmake:

mkdir build

cd build

cmake -DCUDA_ARCH=COMP ..

make

● CUDA_ARCH=COMP will compile for the highest available compute architecture

● Input data location is specified with the -f option

• Bs→ Phi Phi (for efficiency studies): /data/gligorov/WorkshopDatasets/bs2phiphi/allen/bs2phiphi/

• Minimum bias data (for throughput studies): 
/data/gligorov/WorkshopDatasets/minbias/allen/minbias

mailto:username@olquanta1.cern.ch
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