

Light charged Higgs boson with dominant decay to quarks and its search at LHC and future colliders [Phys. Rev. D 98, 115024]

Muyuan Song

University of Southampton

February 20, 2019

Supervisors: Prof. Stefano Moretti Dr.Andrew Akeroyd

Muyuan Song (Southampton)

6th RISE meeting 2019

Motivation

- 2 Light charged Higgs in 3HDM (Three-Higgs-Doublet-Model)
- 3 Mixing matrix and Yukawa couplings
- 4 Charged Higgs decay with cb quark
- 5 Collider Searches and Detection Prospects

6 Summary

Motivation of charged Higgs and MHDM(Multi-Higgs-Doublets-Model)

- A neutral-charged Spin 0 Higgs Boson has been detected at LHC
- Existence of Charged Higgs boson?

	SPIN 0	SPIN 1/2	SPIN 1
Charge 0	H	$ u_e, u_\mu, u_ au$	γ, Z, g
Charge ± 1	H^{\pm} ?	$e^{\pm},\mu^{\pm}, au^{\pm},u,d,c,s,t,b$	W^{\pm}

Reason for MHDM:

- Supersymmetry.
- Three generations of fermions. More generations (doublets) of scalars?
- Extra sources of CP-violation.

Light charged Higgs in 3HDM

Three isospin fields Φ_i(i = 1, 2, 3) are introduced, and each contain a vacuum expectation value with sum rule

$$\sum_{i} v_{i}^{2} = v_{sm}^{2} = (246 \, GeV)^{2}$$

• The mass matrix of the charged scalars is diagonalized by the 3 × 3 matrix U :[C. Albright, J. Smith and S.-H.H.Tye]

$$\begin{pmatrix} G^+ \\ H_2^+ \\ H_3^+ \end{pmatrix} = U \begin{pmatrix} \phi_d^+ \\ \phi_u^+ \\ \phi_\ell^+ \end{pmatrix}.$$

• By considering heavy H_3^+ decouples, the light charged Higgs H_2^+ can have:

$$\mathcal{L}_{H_2^{\pm}} = -H_2^+ \{ \frac{\sqrt{2}V_{ud}}{v_{sm}} \bar{u}(m_d X P_R + m_u Y P_L) d + \frac{\sqrt{2}m_l}{v_{sm}} Z \bar{\nu}_L I_R \} + H.c.$$

 The lightest charged Higgs Yukawa couplings X,Y,Z will depend on this matrix U.

Mixing matrix U in 3HDM

• The matrix U can be written explicitly as a function of four parameters $\tan \beta$, $\tan \gamma$, θ , and δ , where

$$aneta=v_2/v_1, \qquad an\gamma=\sqrt{v_1^2+v_2^2/v_3}\,.$$

- v₁, v₂, and v₃ are the vacuum expectation values of the three Higgs doublets.
- θ is the mixing angle between light and heavy charged Higgses
- δ is the CP phase.
- The explicit form of *U* given as : [C. Albright,J. Smith and S.-H.H.Tye]

$$= \left(\begin{array}{ccc} s_{\gamma}c_{\beta} & s_{\gamma}s_{\beta} & c_{\gamma} \\ -c_{\theta}s_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}c_{\beta} & c_{\theta}c_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}s_{\beta} & s_{\theta}s_{\gamma} \\ s_{\theta}s_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}c_{\beta} & -s_{\theta}c_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}s_{\beta} & c_{\theta}s_{\gamma} \end{array}\right)$$

Here s, c denote the sine or cosine of the respective parameter.

Yukawa Couplings of light charged Higgs in 3HDM

• As heavy H_3^+ decouples, Yukawa couplings for H_2^+ can be isolated:

$$\mathbf{X} = \frac{U_{d2}^{\dagger}}{U_{d1}^{\dagger}}, \qquad \mathbf{Y} = -\frac{U_{u2}^{\dagger}}{U_{u1}^{\dagger}}, \qquad \mathbf{Z} = \frac{U_{\ell2}^{\dagger}}{U_{\ell1}^{\dagger}}$$

• Five versions of 3HDM with NFC.

	u	d	l
3HDM(Type I)		2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)	2	2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3

Constraints on X,Y,Z

$$X = \frac{U_{d2}^{\dagger}}{U_{d1}^{\dagger}}, \qquad Y = -\frac{U_{u2}^{\dagger}}{U_{u1}^{\dagger}}, \qquad Z = \frac{U_{\ell2}^{\dagger}}{U_{\ell1}^{\dagger}}.$$

- The constraints on X and Y couplings come from $Z o b\overline{b}$
- Coupling Z is constrained from $Z \to \tau \overline{\tau}$
- $b \rightarrow s\gamma$ constrains the real part of (XY^*) . For $m_{H^{\pm}} = 100$ GeV case: [Michael Trott, Mark B. Wise,arXiv:1009.2813v3]

$$-1.1 \le \operatorname{Re}(XY^*) \le 0.7.$$

• The Electric Dipole Moment (EDM) of the neutron (or CP-violation arised from charged Higgs couplings) gives the following constraint for $m_{H^{\pm}} = 100 \text{ GeV}$:

$$|\mathrm{Im}(XY^*)| \le 0.1.$$

Study H^{\pm} decay through Yukawa couplings

- For $m_{H^\pm} > m_t, H^\pm o tb$ could dominate for all 2HDMs and 3HDMs.
- Only focus on fermions by considering additonal neutral Higgs bosons to be much heavier than H^{\pm} .

$$\Gamma(H^\pm o \ell^\pm
u) = rac{G_F m_{H^\pm} m_\ell^2 |Z|^2}{4 \pi \sqrt{2}} \ ,$$

$$\Gamma(H^{\pm}
ightarrow ud) = rac{3G_F V_{ud} m_{H^{\pm}} (m_d^2 |X|^2 + m_u^2 |Y|^2)}{4\pi \sqrt{2}}$$

• The mass of quarks are calculated at the scale of $m_{H^{\pm}}$ • $|X| \gg |Y|, |Z|, BR(H^{\pm} \rightarrow cb)$ could be dominant ($\sim 80\%$).

۲

Dominant *cb* decay from light H^{\pm} in 3HDM

Benefit of *cb*:

- Strategy to distinguish between 2HDM and 3HDM.
- Main background is WW, and $W^{\pm} \rightarrow cb$ is small due to small CKM matrix element ($V_{cb} \approx 0.04$).
- Use b-tagging to select signal events and to suppress the background.

Results of study:

• Input fundamental parameters for X, Y, Z are varied as follows :

$$\begin{array}{l} -\frac{\pi}{2} \leq \theta \leq 0 \\ 0 \leq \delta \leq 2\pi \end{array} , \begin{array}{l} 1 \leq \tan\beta \leq 60 \\ 1 \leq \tan\gamma \leq 60 \end{array}$$

• 2 types (Flipped and Democratic) can have large BR(cb).

	u	d	l
3HDM(Type I)	2	2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)	2	2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3

Results for $BR(H^{\pm} \rightarrow cb)$ in Flipped 3HDM in $[tan\beta, tan\gamma]$ plane

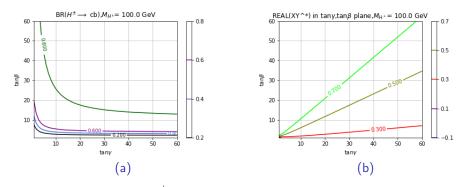


Figure: Branching ratio of H^{\pm} decay through *cb* channel with $\theta = -\pi/3, \delta = 0, M_{H^{\pm}} = 100 \text{ GeV}$ in $[tan\beta, tan\gamma]$ plane. Left Panel: Contours of $BR(H^{\pm} \rightarrow cb)$. Right Panel :Contours of $Re(XY^*)$ ($b \rightarrow s\gamma$ constraint).

Results for $BR(H^{\pm} \rightarrow cb)$ in Democratic 3HDM in $[\delta, \theta]$ plane

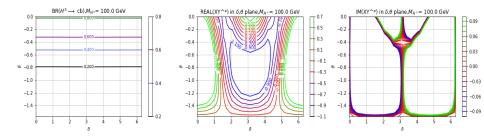
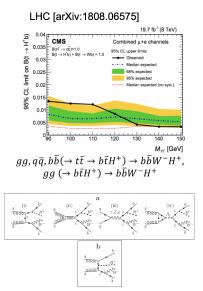
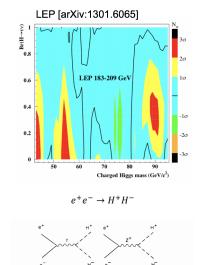


Figure: Branching ratio of H^{\pm} decay through *cb* channel with $tan\beta = 40, tan\gamma = 10, M_{H^{\pm}} = 100 \text{ GeV}$ in $[\delta, \theta]$ plane. Left Panel: Contours of $BR(H^{\pm} \rightarrow cb)$. Central Panel : Contours of $Re(XY^*)$ in $[\delta, \theta]$ plane $(b \rightarrow s\gamma)$ constraint). Right Panel : Contours of $Im(XY^*)$ in $[\delta, \theta]$ plane (EDM constraint).

LHC collider search approach

- Tevatron searched for H^{\pm} using $p\overline{p} \rightarrow t\overline{t}$ with one top quark decaying $t \rightarrow W^{\pm}b$ and the other via $t \rightarrow H^{\pm}b$
- Production of H^{\pm} for $m_{H^{\pm}} < m_t$ at LHC is similar.


$$\Gamma(t o W^{\pm}b) = rac{G_F m_t}{8\sqrt{2}\pi} [m_t^2 + 2M_W^2] [1 - M_W^2/m_t^2]^2$$


۲

$$\Gamma(t o H^{\pm}b) = rac{G_F m_t}{8\sqrt{2}\pi} [m_t^2 |Y|^2 + m_b^2 |X|^2] [1 - m_{H^{\pm}}^2 / m_t^2]^2 \,.$$

- $BR(t \rightarrow H^{\pm}b)$ depends on magnitudes of |X|, |Y|. It affects production rate of charged Higgs.
- LEP search involves only gauge couplings and unknown charged Higgs mass parameter.

Recent charged Higgs research from colliders

(b)

February 20, 2019

6th RISE meeting 2019

(a)

Collider searches with mass limits

- Tevatron set the limit on 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV [DØ, Physics Letters B 682 (2009) 278–286] : $BR(t \to H^{\pm}b) < 0.21$ for 50% $\leq BR(H^{\pm} \to cs) \leq 100\%$
- At LHC, no current sensitivity for 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV.
- Production of H^{\pm} at LHC depends on magnitude of |X|, |Y|.
- Production of H^{\pm} at e^+e^- colliders does not depend on magnitude of |X|, |Y|.
- LEP2 searches found a 2 and more σ excess of events around $m_{H^{\pm}} = 89$ GeV.
- ILC, CEPC, and FCC-ee could be used to discover H[±] with small |X|, |Y| in region 80 GeV ≤ m_{H[±]} ≤ 90 GeV (which would escape detection at LHC).

- We have studied the lightest charged Higgs case in 3HDM with $m_{H^\pm} < m_t$.
- Two types of 3HDM (Flipped and Democratic) can have large $BR(H^{\pm} \rightarrow cb)$. b-tagging could be a good strategy to search for charged Higgs signals.
- First search for t to H[±]b followed by H[±] to cb carried out at LHC recently (August, 2018), with limits for 90 GeV ≤ m_{H[±]} ≤ 150 GeV.
- Currently no sensitivity to 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV, but sensitivity expected in the future.
- If light H[±] with small |X|, |Y| escapes detection at LHC (Blind Spot), then it still could be searched at future e⁺e⁻ colliders.
- Promotion of higher energy e^+e^- colliders is necessary.

Thanks for Listening

References

ATLAS Collaboration and others (2018)

Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector

Journal Name Phys. Rev. D21 (1980) 711.

C. Albright, J. Smith and S.-H.H. Tye(1980) Signatures for charged Higgs boson production in e + e collisions Journal Name Physical Review D,85(11),115002.

Thomas G. Rizzo (1988)

 $b \rightarrow s\gamma$ in the two-Higgs-doublet model Journal Name Physical Review D,38, 820.

- DØ Collaboration (2009)
- S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958

