EW/Higgs precision probes at the FCC-ee: Status after the CDR

Jorge de Blas
University of Padova \& INFN-Sezione di Padova

Based on the results presented in:
FCC CDR Volume 1, Physics Opportunities, https://fcc-cdr.web.cern.ch/
FCC CDR Volume 2, The Lepton Collider, https://fcc-cdr.web.cern.ch/

Introduction

- FCC-CDR: First study of the FCC capabilities to constraint the EW/Higgs sector in a global manner, taking advantage of the complementarities between the different FCC collider options (ee/eh/hh)
- In this presentation:
- Summary of the status of the Global EW/Higgs studies in the CDR with emphasis in the contribution from FCC-ee
- A few aspects of current studies that could be improved? Limitations?
- A couple of topics that did not make it to CDR but could be added
- Disclaimer: No new results in this talk. Only discussion of issues and WiP.
- Physics perspective in this talk presented from the point of view of the formalism of Effective Field Theories (EFT)

The dimension 6 SMEFT

- The dimension 6 SMEFT: Assumes new physics is heavy + decoupling Particles and symmetries of the low-energy theory: SM
Power counting: EFT expansion in canonical dim. of operators

$$
\begin{aligned}
& \quad \mathcal{L}_{\mathrm{Eff}}=\sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\cdots \\
& \quad \mathcal{L}_{d}=\sum_{i} C_{i}^{d} \mathcal{O}_{i} \quad\left[\mathcal{O}_{i}\right]=d \xrightarrow[\substack{\text { Effects } \\
\text { suppressed by }}]{ }\left(\frac{q}{\Lambda}\right)^{\boldsymbol{d}=\boldsymbol{v}} \boldsymbol{\mathrm { L }} \mathrm{E}<\boldsymbol{\Lambda}
\end{aligned}
$$

- LO new physics effects "start" at dimension 6: 59 operators
W. Buchmüller, D. Wyler, Nucl. Phys. B268 (1986) 621
C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 4 I
(2499 counting flavor)
B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085 1st complete basis, aka Warsaw basis
- SMEFT describes correlations of new physics effects in different types of observables, e.g.
$\mathcal{O}_{\phi W B}=\phi^{\dagger} \sigma_{a} \phi B^{\mu \nu} W_{\mu \nu}^{a} \longrightarrow$
EWSB
$v^{2} B^{\mu \nu} W_{\mu \nu}^{3}$ (dim 4)
$\underset{\text { (dim 5) }}{v h B^{\mu \nu} W_{\mu \nu}^{3}} \quad h \rightarrow Z Z, \gamma \gamma$

Modifies neutral gauge boson self-energies

Higgs phys.
\Rightarrow Use global EW/Higgs fits to estimate sensitivity to NP effects

The dimension 6 SMEFT

- Assumptions in Higgs/Diboson/EWPO EFT studies:

 CP-even, 4-fermion/dipole better tested in other processesList of operators and their effects (e.g. in Warsaw basis)

$$
\mathcal{O}_{3 W}=\epsilon_{a b c} W_{\mu}^{a \nu} W_{\nu}^{b \rho} W_{\rho}^{c \mu}
$$

Enters only in $V V$ prod.

Strongly constrained by EWPO (induce modified Vff couplings)

Modify SM inputs:
Enter in all EW processes

EFT fits to precision EW measurements

Global Fits to EW precision measurements

- EWPO: very precise measurements of W and Z boson properties
- Current knowledge dates back to the LEP era...
- ...but also receives inputs from Tevatron/LHC
- Crucial in the confirmation of the validity of the SM descriptions of EW interactions...
- ...in guiding Higgs and Top searches...
- ... and setting strong constraints on new physics modifying the EW sector, e.g.

The SM EW fit

- The core of the EWPO program at FCC comes from FCC-ee...

Fit inputs: Theory and Experiment

Electroweak Precision measurements at FCC-ee: CDR summary

Observable	present value \pm error	FCC-ee stat.	FCC-ee syst.	Comment and dominant exp. error
$\mathrm{m}_{\mathrm{Z}}(\mathrm{keV})$	91186700 ± 2200	5	100	Z line shape scan; beam energy calibration
$\Gamma_{\mathrm{Z}}(\mathrm{keV})$	2495200 ± 2300	8	100	Z line shape scan; beam energy calibration
$R_{l}^{Z}\left(\times 10^{3}\right)$	20767 ± 25	0.06	0.2-1.0	ratio hadrons / leptons, lepton acceptance
$\alpha_{s}\left(\mathrm{~m}_{\mathrm{Z}}\right)\left(\times 10^{4}\right)$	1196 ± 30	0.1	0.4-1.6	from R_{l}^{Z} above
$R_{b}\left(\times 10^{\circ}\right)$	216290 ± 660	0.3	<60	ratio $\mathrm{b} \overline{\mathrm{b}} /$ hadrons, stat. extrapol. from SLD
$\begin{array}{\|l} \hline \sigma_{\text {had }}^{0}\left(\times 10^{3}\right)(\mathrm{nb}) \\ \mathrm{N}_{v}\left(\times 10^{3}\right) \\ \hline \end{array}$	$\begin{gathered} 41541 \pm 37 \\ 2991 \pm 7 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.005 \\ \hline \end{gathered}$	4	peak hadronic cross section, luminosity meas. Z peak cross sections, luminosity measurement
$\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}\left(\times 10^{6}\right)$	231480 ± 160	3	2-5	from $A_{\text {FB }}^{\mu \mu}$ at Z peak, beam energy calibration
$1 / \alpha_{\mathrm{QED}}\left(\mathrm{m}_{\mathrm{Z}}\right)\left(\times 10^{3}\right)$	128952 ± 14	4	Small	from $A_{\text {FB }}^{\mu \mu}$ off peak
$A_{\mathrm{FB}}^{b, 0}\left(\times 10^{4}\right)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole, from jet charge
$A_{\text {FB }}^{\text {pol, } \tau}\left(\times 10^{4}\right)$	1498 ± 49	0.15	<2	τ polarisation, charge asymmetry, τ decay physics
$\mathrm{m}_{\text {W }}(\mathrm{MeV})$	80350 ± 15	0.6	0.3	WWW threshold scan; beam energy calibration
$\Gamma_{\text {W }}(\mathrm{MeV})$	2085 ± 42	1.5	0.3	WWW threshold scan; beam energy calibration
$\alpha_{s}(\mathrm{mw})\left(\times 10^{4}\right)$	1170 ± 420	3	Small	from R_{l}^{W}
$\mathrm{N}_{v}\left(\times 10^{3}\right)$	2920 ± 50	0.8	Small	ratio invisible to leptonic in radiative Z returns
$\mathrm{m}_{\text {top }}(\mathrm{MeV})$	172740 ± 500	20	Small	t \bar{t} threshold scan; QCD errors dominate
$\Gamma_{\text {top }}(\mathrm{MeV})$	1410 ± 190	40	Small	$\mathrm{t} \overline{\mathrm{t}}$ threshold scan; QCD errors dominate
$\lambda_{\text {top }} / \lambda_{\text {top }}^{\text {SM }}$	1.2 ± 0.3	0.08	Small	$t \bar{t}$ threshold scan; QCD errors dominate
ttZ couplings	$\pm 30 \%$	0.5-1.5\%	Small	from $\mathrm{E}_{\mathrm{CM}}=365 \mathrm{GeV}$ run

Fit inputs: Theory and Experiment

Electroweak Precision measurements at FCC-ee

	Observable	Expected uncertainty	(Relative uncertainty)
	$M_{Z}[\mathrm{GeV}]$	10^{-4}	$\left(10^{-6}\right)$
	$\Gamma_{Z}[\mathrm{GeV}]$	10^{-4}	$\left(4 \times 10^{-5}\right)$
	$\sigma_{\text {had }}^{0}[\mathrm{nb}]$	5×10^{-3}	$\left(10^{-4}\right)$
	$\boldsymbol{R}_{\boldsymbol{e}}$	0.006	$\left(3 \times 10^{-4}\right)$
	\boldsymbol{R}_{μ}	0.001	$\left(5 \times 10^{-4}\right)$
	$\boldsymbol{R}_{\boldsymbol{\tau}}$	0.002	$\left(10^{-4}\right)$
	$R_{\text {b }}$	0.00006	$\left(3 \times 10^{-4}\right)$
	$\boldsymbol{R}_{\text {c }}$	0.00026	$\left(15 \times 10^{-4}\right)$
	Observable	Expected uncertainty	y (Relative uncertainty)
	A_{e}	10^{-4}	$\left(7 \times 10^{-4}\right)$
	$\boldsymbol{A}_{\boldsymbol{\mu}}$	1.5×10^{-4}	$\left(10^{-3}\right)$
${ }_{0}^{0}$	$\boldsymbol{A}_{\boldsymbol{\tau}}$	3×10^{-4}	$\left(2 \times 10^{-3}\right)$
O	$A_{\text {b }}$	30×10^{-4}	$\left(32 \times 10^{-4}\right)$
©	$\boldsymbol{A}_{\text {c }}$	80×10^{-4}	$\left(12 \times 10^{-3}\right)$
$\begin{aligned} & \text { © } \\ & \hline \underline{1} \end{aligned}$	$\begin{aligned} & \sin ^{2} \theta_{\mathrm{Eff}}^{e}\left(P_{\tau}\right) \\ & \sin ^{2} \theta_{\mathrm{Eff}}^{e}\left(A_{F B}^{\mu}\right) \end{aligned}$	$\begin{gathered} \hline 6.6 \times 10^{-6} \\ 5 \times 10^{-6} \\ \hline \end{gathered}$	$\begin{aligned} & \left(3 \times 10^{-5}\right) \\ & \left(2 \times 10^{-5}\right) \end{aligned}$
	Observable	Expected uncertainty (R)	(Relative uncertainty)
	$M_{W}[\mathrm{GeV}]$	6.5×10^{-4}	$\left(8 \times 10^{-6}\right)$
	$\Gamma_{W}[\mathrm{GeV}]$	1.59×10^{-3}	$\left(8 \times 10^{-4}\right)$
	- $R_{\text {inv }}$	0.002	$\left(3 \times 10^{-4}\right)$

Fit inputs: Theory and Experiment

Diboson (WW) precision measurements at FCC-ee

Decay mode relative precision	$B(\mathrm{~W} \rightarrow \mathrm{e} \nu)$	$B(\mathrm{~W} \rightarrow \mu \nu)$	$B(\mathrm{~W} \rightarrow \tau \nu)$	$B(\mathrm{~W} \rightarrow q q)$
LEP2	1.5%	1.4%	1.8%	0.4%
FCC-ee	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$1 \cdot 10^{-4}$

Relevant to constrain CC couplings + NC for each neutrino flavour
Theory uncertainties (missing H.O. corrections): EWPO

FCC-ee-Z EWPO error estimations				
	$\delta \Gamma_{Z}[\mathrm{MeV}]$	$\delta R_{l}\left[10^{-4}\right]$	$\delta R_{b}\left[10^{-5}\right]$	$\delta \sin ^{2} \theta_{\text {eff }}^{1}\left[10^{-5}\right]$
FCC-ee	0.1	10	$2 \div 6$	6
TH1-new	0.4	60	10	45
TH2	0.15	15	5	15
TH3	<0.07	<7	<3	<7

Standard Model Theory for the FCC-ee: The Tera-Z, arXiv:1809.01830 [hep-ph]

- TH1: Current intrinsic uncertainty
- TH2: Extrapolation assuming EW 3-loop corrections are known
- TH3: Same as TH2 assuming dominant 4-loop corrections are known

Modeled via nuisance parameters modifying the SM predictions

The Global EW fit at FCC-ee

- Global fit to electroweak precision measurements at FCC-ee

Impact of theory uncertainties

The Global EW fit at FCC-ee/eh

The Global EW fit at FCC-ee/eh

- Global fit to electroweak precision measurements at FCC-ee/eh

Current vs FCC-ee/eh

1- σ sensitivity to deviations in NC couplings from SMEFT fit: No flavour universality assumed
Independent info about all 3 SM fermion families

Beyond the CDR studies

A few questions

- Parametric uncertainties:

	α_{s}	$\alpha_{\mathrm{QED}} / \Delta \alpha_{\mathrm{had}}^{(5)}$	M_{Z}	m_{t}	Total	FCCee
$\delta M_{W}[\mathrm{MeV}]$	± 0.14	$\pm 0.53 / \pm 0.92$	± 0.1	± 0.3	$\pm 0.64 / \pm 0.98$	± 0.6
$\delta \Gamma_{Z}[\mathrm{MeV}]$	± 0.099	$\pm 0.03 / \pm 0.05$	± 0.01	± 0.01	$\pm 0.1 / \pm 0.11$	± 0.1
$\delta \mathcal{A}_{\ell}\left[\times 10^{-5}\right]$	± 0.54	± 8	$/ \pm 14$	± 0.56	$\pm \mathbf{1} .2$	$\pm 8.1 / \pm 14$
$\delta R_{b}^{0}\left[\times 10^{-5}\right]$	± 0.22	$\pm 0.04 / \pm 0.07$	± 0.003	± 0.17	$\pm 0.28 / \pm 0.29$	± 6

Even if theory calculation improve such that higher order contributions are negligible wrt FCC-ee precision, parametric uncertainties will remain

	Observable	present value \pm error	FCC-ee stat.	FCC-ee syst.	
	$\mathrm{m}_{\mathrm{Z}}(\mathrm{keV})$	91186700 ± 2200	5	100	
	$\Gamma_{\mathrm{Z}}(\mathrm{keV})$	2495200 ± 2300	8	100	
	$R_{l}^{Z}\left(\times 10^{3}\right)$	20767 ± 25	0.06	0.2-1.0	
	$\alpha_{s}\left(\mathrm{~m}_{\mathrm{Z}}\right)\left(\times 10^{4}\right)$	1196 ± 30	0.1	0.4-1.6	
	$R_{b}\left(\times 10^{6}\right)$	216290 ± 660	0.3	<60	
	$\begin{aligned} & \sigma_{\text {had }}^{0}\left(\times 10^{3}\right)(\mathrm{nb}) \\ & \mathrm{N}_{v}\left(\times 10^{3}\right) \end{aligned}$	$\begin{gathered} 41541 \pm 37 \\ 2991 \pm 7 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.005 \end{gathered}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	
$\begin{aligned} & \text { \# } \\ & \stackrel{0}{c} \\ & \sum_{\omega}^{2} \end{aligned}$	$\sin ^{2} \theta_{\mathrm{W}}^{\text {eff }}\left(\times 10^{6}\right)$	231480 ± 160	3	2-5	
	$1 / \alpha_{\text {OED }}\left(\mathrm{m}_{\mathrm{Z}}\right)\left(\times 10^{3}\right)$	128952 ± 14	4	Small	
	$A_{\mathrm{FB}}^{b, 0}\left(\times 10^{4}\right)$	992 ± 16	0.02	1-3	

$\alpha_{\text {OED }}$ still limiting factor but Statistically limited How low can we go? (More time running off-pole, 4IP?)

Beyond the CDR studies

A few questions

- Determination of \mathbf{Z} couplings to light quarks relies on FCC-eh
u-type quarks

- 4-Fermion effects suppressed at the Z-pole

What is the FCC-ee Z-pole run potential to measure light quark interactions?

Beyond the CDR studies

A few questions

- Determination of \mathbf{Z} couplings to light quarks relies on FCC-eh

u-type quarks

Old LEP studies of light flavours ($\mathbf{u}, \mathrm{d}, \mathrm{s}$) studies relied either on SM assumptions (DELPHI) or partial flavour universality constraints (OPAL)

$$
\begin{aligned}
\frac{R_{\mathrm{u}}}{R_{\mathrm{d}}+R_{\mathrm{u}}+R_{\mathrm{s}}} & =1-\frac{2 R_{\mathrm{d}, \mathrm{~s}}}{R_{\mathrm{d}}+R_{\mathrm{u}}+R_{\mathrm{s}}}=0.258 \pm 0.031 \pm 0.032 \\
A_{\mathrm{FB}}^{0, \mathrm{~s}} & =0.072 \pm 0.035 \pm 0.011-0.0119\left(A_{\mathrm{FB}}^{0, \mathrm{c}}-0.0722\right) / 0.0722 \\
A_{\mathrm{FB}}^{0, \mathrm{u}} & =0.044 \pm 0.067 \pm 0.018-0.0334\left(A_{\mathrm{FB}}^{0, \mathrm{c}}-0.0722\right) / 0.0722
\end{aligned}
$$

2019->FCC-ee time : Can these assumptions be removed?
FCC-ee checks on light flavour couplings could strengthen the model-independence of FCC-eh results and robustness of Global FCC EW fit

What is the FCC-ee Z-pole run potential to measure light quark interactions?

Beyond the CDR studies

Difermion production ($\left.e^{+} e^{-} \rightarrow f f\right)$ above the \mathbf{Z} pole

- CDR EWPO studies focus mostly on ff production around the \mathbf{Z} pole
- Complementarity: Data off the pole sensitive to physics suppressed at the \mathbf{Z}-pole because of the resonance, e.g. extra vector bosons $\left(Z^{\prime}\right)$

(c)

$$
\Rightarrow \text { Z-pole }
$$

- What is the sensitivity of FCC-ee data to $\mathbf{C l}$ at $\mathbf{W W}, \mathbf{Z H}, \mathrm{tt}$ threshold?
- HL-LHC will probably outperform FCC-ee for (some) Lepton-Quark CI But testing 4-Lepton interactions is for Lepton colliders

Beyond the CDR studies

Four-fermion interactions at tt threshold

- As in the light quark case, the extraction of the EW Top couplings is also not completely model-independent:

$$
\Gamma_{\mu}^{t t X}=-i e\left\{\gamma_{\mu}\left(\boldsymbol{F}_{1 V}^{X}+\gamma_{5} \boldsymbol{F}_{1 A}^{X}\right)+\frac{\sigma_{\mu \nu}}{2 m_{t}}\left(\boldsymbol{p}_{t}+\boldsymbol{p}_{\bar{t}}\right)^{\nu}\left(\boldsymbol{i \boldsymbol { F } _ { 2 V } ^ { X } + \gamma _ { 5 } \boldsymbol { F } _ { 2 A } ^ { X }}\right)\right\}
$$

BSM: generated at 1 Loop

P. Janot, JHEP 1504 (2015) 182
(Functions of q^{2})

Using only one energy one cannot disentangle contributions to $Z t t$ from those to $e^{+} e^{-} t t \mathrm{Cl}$

FCC-ee runs at 2 energies very close to each other: 350 GeV ($0.2 / \mathrm{ab}$) and 365 GeV (1.5/ab) \Rightarrow limitation for model-independent extraction?

EFT fits to precision Higgs measurements at FCC

Global Fits to Higgs observables

- Measuring the Higgs couplings is an integral part of the physics program of the LHC/HL-LHC:
- Expected precision ~few/several percent (κ framework)

- but not model-independent (either ratios or need extra assumptions: e.g. No exotic decays)
- FCC can push the precision below 1\% plus more model-independent

Fit inputs: Theory and Experiment

Higgs Precision measurements at FCC-ee

(See. P. Janot's talk)

$\sqrt{s}(\mathrm{GeV})$	240	365	
Luminosity $\left(\mathrm{ab}^{-1}\right)$	5	1.5	
$\delta(\sigma \mathrm{BR}) / \sigma \mathrm{BR}(\%)$	HZ	$\nu \bar{\nu} \mathrm{H}$	HZ
$\nu \overline{\mathrm{V}} \mathrm{H}$			
$\mathrm{H} \rightarrow$ any	± 0.5	± 0.9	
$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$	± 0.3	± 3.1	± 0.5
$\mathrm{H} \rightarrow \mathrm{c} \overline{\mathrm{c}}$	± 2.2	$\pm .9$	
$\mathrm{H} \rightarrow \mathrm{gg}$	± 1.9	± 6.5	± 10
$\mathrm{H} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$	± 1.2	± 3.5	± 4.5
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4	± 2.6	± 3.0
$\mathrm{H} \rightarrow \tau \tau$	± 0.9	± 12	± 10
$\mathrm{H} \rightarrow \gamma \gamma$	± 9.0	± 1.8	± 8
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$	± 19	± 40	
$\mathrm{H} \rightarrow$ invis.	<0.3	<0.6	

Absolute measurement of HZZ couplings (ozh)

Allows to normalize H couplings (no ratios)

> к-framework: model-independent determination of Higgs width

Fit inputs: Theory and Experiment

Theory uncertainties: Higgs observables

Decay	Intrinsic	Param. $\boldsymbol{m}_{\boldsymbol{q}}$	Param. α_{s}	Para. $M_{\boldsymbol{H}}$
$\boldsymbol{H} \rightarrow \boldsymbol{b} \bar{b}$	$\sim 0.2 \%$	0.6%	$<0.1 \%$	-
$\boldsymbol{H} \rightarrow \boldsymbol{c} \overline{\boldsymbol{c}}$	$\sim 0.2 \%$	$\sim 1 \%$	$<0.1 \%$	-
$\boldsymbol{H} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$	$<0.1 \%$	-	-	-
$\boldsymbol{H} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$	$<0.1 \%$	-	-	-
$\boldsymbol{H} \rightarrow \boldsymbol{g} \boldsymbol{g}$	$\sim 1 \%$		0.5%	-
$\boldsymbol{H} \rightarrow \gamma \gamma$	$<1 \%$	-	-	-
$\boldsymbol{H} \rightarrow \boldsymbol{Z} \gamma$	$\sim 1 \%$	-	-	
$\boldsymbol{H} \rightarrow \boldsymbol{W} \boldsymbol{W}$	$\lesssim 0.4 \%$	-	-	$\sim 0.1 \%$
$\boldsymbol{H} \rightarrow \boldsymbol{Z} \boldsymbol{Z}$	$\lesssim 0.3 \%{ }^{\dagger}$	-	-	$\sim 0.1 \%$
$\Gamma_{\text {tot }}$	$\sim 0.3 \%$	$\sim 0.4 \%$	$<0.1 \%$	$<0.1 \%$
${ }^{\dagger}$ From $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{H Z}$ production	Projections from Heinemeyer et al.			

We studied the impact of these uncertainties on the FCC-ee projections in Volume 2

Higgs fits at FCC-ee

Fit to Higgs precision measurements at FCC-ee
Impact of theory uncertainties

Fit 1 operator at a time

Small or moderate impact of theory uncertainties (compared to the case of EWPO)

Fit inputs: Theory and Experiment

Diboson (WW) precision measurements at FCC-ee: aTGC

From fit to diff. distribution in all angles

FCC-ee $e^{+} e^{-} \rightarrow W W$ semileptonic channel all angles								
	240 GeV only				365 GeV only			
	uncertainty	correlation matrix			uncertainty	correlation matrix		
		$\delta g_{1, Z}$	$\delta \kappa_{\gamma}$	λ_{Z}		$\delta g_{1, Z}$	$\delta \kappa_{\gamma}$	λ_{Z}
$\delta g_{1, Z}$	11.2×10^{-4}	,	0.08	-0.90	13.9×10^{-4}	1	-0.57	-0.80
$\delta \kappa_{\gamma}$	8.6×10^{-4}		1	-0.42	8.3×10^{-4}		1	0.10
λ_{Z}	12.3×10^{-4}			1	11.9×10^{-4}			1

$\mathbf{2 4 0 / 3 5 0 / 3 6 5} \mathbf{~ G e V}$										$\mathbf{1 6 1 / 2 4 0 / 3 5 0 / 3 6 5} \mathbf{~ G e V}$		
	uncertainty	correlation matrix	uncertainty	correlation matrix								
			$\delta g_{1, Z}$	$\delta \kappa_{\gamma}$	λ_{Z}		$\delta g_{1, Z}$	$\delta \kappa_{\gamma}$				
		λ_{Z}										
$\delta g_{1, Z}$	8.1×10^{-4}	1	-0.28	-0.87	8.1×10^{-4}	1	-0.28	-0.87				
$\delta \kappa_{\gamma}$	5.2×10^{-4}		1	-0.12	5.2×10^{-4}		1	-0.12				
λ_{Z}	7.9×10^{-4}			1	7.9×10^{-4}			1				

aTGC

$$
\begin{aligned}
\mathcal{L}_{\mathrm{TGC}} & =i e\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}+\left(1+\delta \kappa_{\gamma}\right) A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g \cos \theta_{W}\left[\left(1+\delta g_{1, Z}\right)\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\left(1+\delta \kappa_{Z}\right) Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i e \frac{\lambda_{\gamma}}{m_{W}^{2}} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+i g \cos \theta_{W} \frac{\lambda_{Z}}{m_{W}^{2}} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu},
\end{aligned} \begin{gathered}
\left.\delta \kappa_{Z}=\delta g_{1, Z}-\frac{g^{\prime 2}}{g^{2}} \delta \kappa_{\gamma}\right) \\
\lambda_{\gamma}=\lambda_{Z}
\end{gathered}
$$

Fit inputs: Theory and Experiment

Diboson (WW) precision measurements at FCC-ee: aTGC

From fit to diff. distribution in all angles

$+i e \frac{\lambda_{\gamma}}{m_{W}^{2}} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+i g \cos \theta_{W} \frac{\lambda_{Z}}{m_{W}^{2}} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}$,

The Global Higgs fit at FCC

- Fit to Higgs precision measurements at FCC:

Assuming perfect EW measurements

$1-\sigma$ sensitivity to NP in effective couplings $g_{h X X}^{\operatorname{eff} 2}=\frac{\Gamma_{H \rightarrow X X}}{\Gamma_{H \rightarrow X X}^{S M}}$ in the SMEFT framework After FCC-ee/eh/hh: most couplings to be known with a precision below 1\%

The Global Higgs fit at FCC

- Fit to Higgs precision measurements at FCC:

Assuming perfect EW measurements

1- σ sensitivity to NP in effective couplings $g_{h X X}^{\text {eff }} 2$ After FCC-ee/eh/hh: most couplings to be known with a precision below 1\%

The Global Higgs fit at FCC

- Fit to Higgs precision measurements at FCC:

Assuming perfect EW measurements

The Global Higgs fit at FCC

- Fit to Higgs precision measurements at FCC: Assuming perfect EW measurements

1- σ sensitivity to NP in effective couplings $g_{h X X}^{\text {eff }}{ }^{2}=\frac{\Gamma_{H \rightarrow X X}}{\Gamma_{H \rightarrow X X}^{S M}}$ in the SMEFT framework After FCC-ee/eh/hh: most couplings to be known with a precision below 1\%

The Global Higgs fit at FCC-ee

FCCee sensitivity to Higgs trilinear coupling

- Can be tested at FCC-ee via NLO effects
M. McCullough, PRD90 (2014) no.1, 015001
S. Di Vita et al., JHEP 1802 (2018) 178

NP in the effective Higgs trilinear coupling in the SMEFT framework

$$
\mathcal{L}_{h^{3}}=g_{h h h} h^{3}
$$

$$
g_{h h h}=-\frac{M_{h}^{2}}{2 v}\left(1+\left[3\left(C_{\phi \square}-\frac{1}{4} C_{\phi D}\right)-2 \frac{v^{2}}{M_{h}^{2}} C_{\phi}-\frac{1}{2} \Delta_{G_{F}}\right] \frac{v^{2}}{\Lambda^{2}}\right)
$$

From a global fit to the FCCee Higgs + Diboson data:

$$
\delta g_{h h h} / g_{h h h}^{\mathrm{SM}} \approx 40 \% \quad\left(\delta g_{h h h} / g_{h h h}^{\mathrm{SM}} \approx 25 \% \quad 4 \mathrm{IPs}\right)
$$

Indirect FCC-ee sensitivity to Higgs trilinear better than direct at HL-LHC (~50\%)

The Global Higgs fit at FCC

- Fit to Higgs precision measurements at FCC:

Assuming perfect EW measurements

The Global EW+Higgs fit at FCC

- In previous Higgs results we assumed perfect EW measurements, e.g.

Perfect EW: Known to be SM-like with ∞ precision. Also implies these contact int. are absent

- Also misses impact of finite precision of Ztt in $\sigma(t t H) / \sigma(t t Z)$
- A robust analysis of Higgs couplings requires to add finite precision for all those interactions \Rightarrow Global EW + Higgs fit
- FCC-ee EWPO \approx perfect EW measurements from the point of view of Higgs measurements

The Global EW+Higgs fit at FCC

- Fit to EW and Higgs precision measurements at FCC:

Beyond the CDR studies

Still missing: $\mathrm{HZ} \gamma$ interactions

Independent from other interactions in k analysis but not in EFT

- CEPC (only 240 GeV): $\mu_{Z_{\gamma}} \sim 16 \%$. FCC-ee (240+365 GeV)??

Beyond the CDR studies

Angular information in $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathbf{Z H}$

N. Craig, J. Gu, Z. Liu, K. Wang, arXiv: 1512.06877 [hep-ph]

6 angular observables

?

Beyond the CDR studies

Full EFT study of $e^{+} e^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}$production

- Current FCC-ee aTGC results: Fit to binned angular distr. (no corr.). Also assume aTGC dominance, i.e.

- Good approx. at LEP2. Probably good approx. at FCC-ee too...

Beyond the CDR studies

Full EFT study of $e^{+} e^{-} \rightarrow W^{+} W^{-}$production

- Current FCC-ee aTGC results: Fit to binned angular distr. (no corr.). Also assume aTGC dominance, i.e.

- Good approx. at LEP2. Probably good approx. at FCC-ee too...
- ...testing using full EFT parameterization... plus statistical optimal observable analysis JB, G. Durieux, C. Grojean, J. Gu, A. Paul, In preparation

OO study is idealized: only take care of statistics part

How large are sys. expected to be in WW at FCC-ee?

$$
\Delta_{\mathrm{sys}} \approx \Delta_{\mathrm{stat}} ?
$$

Did we miss anything?

- Probably... There was certainly more we wanted to do:

From the defunct Volume 5

16 Higgs boson mass measurement
17 Higgs boson CP Measurement
18 Exotic Higgs boson decays

No info of M_{H} in CDR! Precision of $\sim 10 \mathrm{MeV}$ needed to push parametric uncertainties in $h \rightarrow V V^{*}$ to an acceptable level (CEPC claims 5.9 MeV)

4 Lepton Flavour violation in Z decays
(and Higgs)

- ...Looking forward to see the results that were in preparation for those sections

