FCC-ee: Your Questions Answered

Why a Q&A document now?

Several reasons for such a document

- Prepare for the European Strategy symposium in Granada (13-16 May 2019)
 - Reference doc. for FCC supporters to answer questions and intervene in meetings
- Summarize strategic discussions we had with the DG between 2014 and 2018
 - E.g., address widespread opinion that a linear collider is essential for the future
- Answer a number of statements about alleged weaknesses of FCC-ee
 - No energy upgrade to 500 GeV, no polarization, no Higgs factory for six years, ...
- Compare the FCC integrated programme (ee+hh) with other collider projects
 - The FCC is a young, rapidly growing, project requires some pedagogy
- Inform scientific and strategic discussions between non-experts
 - E.g., the Physics Preparatory group and the European Strategy Group
 - **▶** Until the final recommendation from CERN Council in 2020
- Reach out and develop the FCC-ee international network
 - Currently the major weakness of the project
- The Q&A structure is dynamic
 - Allows more questions to be answered after the Granada symposium
 - Easiest and quickest route to put many diverse arguments together
 - No need for introduction, conclusion, transitions. Repetitions possible.

Where can I find the Q&A document?

- The document is currently developing on Overleaf
 - And can be viewed in its up-to-date version at

https://www.overleaf.com/read/vydqdssqqxnw

¹Send your questions to patrick.janot@cern.ch and alain.blondel@cern.ch

What can I find in the Q&A document?

□ Well ... Q&A's!

	t William Dag a	
37	1 What is FCC-ee?	
38	2 Can I do Higgs physics right away with FCC-ee?	
39	3 How can the FCC-ee Machine Parameters reach such High Luminosities?	
40	3.1 What is the basis for the FCC-ee machine parameters?	
41	3.2 How do circular and linear e^+e^- colliders compare in this respect?	
42	3.2.1 Historical record	
43	3.2.2 Beam sizes	
44	3.2.3 Positron source	
45	3.2.4 Beam emittance	
46	3.3 Summary	
47	4 How will the FCC-ee Detectors deal with Beam Backgrounds?	
48	5 Is the FCC-ee just another Higgs Factory?	
49	6 Is a Muon Collider an Interesting Higgs Factory?	
50	7 Why Two Interaction Points at FCC-ee?	
51	8 Do we need an $\mathrm{e^+e^-}$ Energy of at least 500 GeV to Study the Higgs Boso Thoroughly?	n
52	1 noroughly:	
53	9 Why are the FCC-ee Beams not Polarized Longitudinally?	
54	10 Will the Accuracy of FCC-ee Higgs Measurements be Affected by Experimenta	ıl
55	Uncertainties?	
56	11 Is FCC-ee more than a Higgs Factory?	
57	12 Why is FCC-ee More Precise for Electroweak Measurements?	
58	13 Will Theory be Sufficiently Precise to Match this Experimental Precision?	
59	14 Is FCC-ee a Discovery Machine?	
60	15 Is the FCC-ee Project "Ready to Go"?	
61	16 What is the cost of the FCC-ee?	
62	16.1 What are the FCC-ee Construction Costs?	
63	16.2 What are the Costs of Operating FCC-ee?	
64	17 Can FCC-ee be the First Stepping Stone for the Future of our Field?	
65	18 Can there be a Smooth Transition between the HL-LHC and FCC-ee?	

67	20 Will the FCC-ee delay the FCC-hh?	25
68	21 How long will the Shutdown between FCC-ee and FCC-hh be?	25
69	22 Are there Better Ways to 100 TeV than FCC-ee?	26
70	22.1 Learning from History	27
1	22.2 Looking at the numbers	28
2	22.3 Should we by-pass the FCC-ee and go directly for a 100 or 150 TeV hadron collider?	28
	22.4 Should we by-pass the FCC-ee and go to a high-energy upgrade of the LHC instead?	28
	22.5 Rather than starting with FCC-ee, should we build a lower-energy hadron collider	
	in the FCC tunnel?	29
	22.6 Why not a low-energy linear e^+e^- collider instead?	29
7	22.7 Should we leave FCC-ee to China?	30
В	23 Is there a Role for Linear-Collider Physicists at FCC-ee?	31
	\	

Click on the question.
Read the answer.

Pa

vsics Me ly 2019

What can I find in the Q&A document?

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

Example of answer (concise, documented)

21 How long will the Shutdown between FCC-ee and FCC-hh be?

The schedule of the FCC integrated programme foresees 15 years of FCC-ee operation and 25 years of FCC-hh operation, interleaved with a shutdown of 10 years to dismantle the lepton collider and install the hadron collider in the FCC tunnel. This estimate for the shutdown duration results from an in-depth study based on past experience at CERN and on the planning optimization for civil engineering and infrastructure realization. However, it has been argued that a simple extrapolation of the LEP-LHC transition to the transition from FCC-ee to FCC-hh could lead to a longer duration [75].

A brief account of the LEP-LHC transition period can be found in [76]. LEP was shut down on 2 November 2000, to make way for the installation of the Large Hadron Collider in the same tunnel [77], with an envisaged transition time of about four years. LEP dismantling [78] started on 27 November 2000, and after three months the most critical two-thirds of the LEP ring had been emptied [76]. Surveying for the LHC started in November 2001 in the empty LEP tunnel [79], so LEP dismantling took less than a year before work for the LHC could start. The last piece of LEP went to the surface in February 2002 [80], so LEP dismantling caused no delay in the LHC installation. This experience gives no reason to believe that the FCC-ee dismantling will cause any delay to the FCC-hh installation. (The possibility of leaving the FCC-ee collider in the tunnel can also be studied.) Drop the parenthetical statement?

Items on the critical path to late LHC startup included the following:

- Significant infrastructure work was needed for the LHC, in particular the excavation of the new, large, caverns for ATLAS and CMS;
- A financial crisis possibly caused by an underestimation of the LHC cost arose, leading to a redefinition of the cost to completion and of the commissioning schedule [81], and delaying in turn the start of LHC to 2007;
- The mass production of the LHC dipole cold masses was handed over to industry [82] in December 2001 (i.e., after the end of LEP dismantling), and the tender was concluded in

spring 2002. By December 2003, CERN had taken delivery of 154 LHC dipoles out of a total of 1232, and a considerable amount of testing was still necessary [83].

The installation of the cryogenic line (QRL) started in August 2003 and after many difficulties [84], was complete in November 2006. The first magnet was lowered in the tunnel on 7 March 2005 [85]. the full installation of the accelerator was completed in spring 2008, and the first circulating beam in the LHC was celebrated on 10 September 2008 [86], i.e, within three and a half years after the beginning of the magnet installation. A major incident took place only three weeks later when a magnetic quench occurred in about 100 bending magnets, causing the loss of approximately six tonnes of liquid helium. This incident was quickly analysed and a repair plan designed [87]. This delayed the first beam in LHC as well as first collisions to the end of 2009 [88], and the real start of physics to early 2010.

The conclusion of this analysis of the LEP-LHC shutdown can be summarized as follows.

- As discussed in Section 22.1, if it had not been for LEP, it is quite likely that the LHC would not have been built at all:
- The installation of the LHC in the LEP tunnel did not slow down the completion of LHC, but rather made it easier compared to having to excavate and complete a new infrastructure. The LEP dismantling took less than a year. Although the LEP tunnel was initially not designed to host a 14 TeV hadron collider, the installation of the LHC accelerator itself, thanks to extraordinary efforts, was quite rapid, about three years. A transition period of 10 years for the FCC is therefore quite a reasonable evaluation;
- The LHC delays during this period were largely intrinsic to the readiness of LHC itself, which
 was still in a preparatory phase when the LEP dismantling was over. A corollary message
 for the FCC-hh installation, is that the best way to ensure a short transition between
 two machines is to make sure that the the second one is ready to install before
 the first machine is shut down:
- The FCC schedule is prepared in such a way as to avoid the planning- and infrastructure-related issues that made the LHC installation difficult. In particular: the tunnel diameter is much larger (5.5 m instead of 3.8 m), enabling easier installation; the large experimental caverns are to be built at the beginning of the project already for FCC-ee; the dipole magnets are being studied already today, so that mass production can start well before the initiation of FCC-bh installation; finally, FCC-ee will not be pushed to its absolute limit in the hope of finding a new particle in the last year: the transfer of scientific personnel from one FCC to the other should be much smoother.

The planned 10-year period for the FCC-ee to FCC-hh transition takes into account the lessons learned from the LEP-LHC transition. It is technically very solid and conservative.

25

910

Can I contribute to the Q&A document?

- Comments, suggestions, more Q (& A) can be sent
 - ◆ To <u>patrick.janot@cern.ch</u> and <u>alain.blondel@cern.ch</u>
 - You can also add your comments directly in Overleaf
 - Select the piece of text you want to comment on
 - Click on "Add comment"
 - Type your comment in the window
 - Click on "Comment"
 - If you want to edit or delete your comment later, click on "Edit" or "Delete"

Can I sign the Q&A document?

You are very welcome to sign the paper

Send us your name and affiliation (full address)

```
A. Blondel<sup>1,2</sup>, P. Janot<sup>2</sup>
   With contributions from
   P. Azzi<sup>3</sup>, M. Boscolo<sup>4</sup>, M. Dam<sup>5</sup>, J. Ellis<sup>6</sup>, J. Gluza<sup>7,8</sup>, C. Helsens<sup>2</sup>, S. Jadach<sup>9</sup>,
<sup>17</sup> M. Koratzinos<sup>10</sup>, C. Leonidopoulos<sup>11</sup>, E. Locci<sup>12</sup>, M. Mangano<sup>2</sup>, E. Perez<sup>2</sup>, T. Riemann<sup>7,13</sup>.
18 R. Tenchini<sup>14</sup>, M. Selvaggi<sup>2</sup>, F. Zimmermann<sup>2</sup>.
        <sup>1</sup> University of Geneva, CH-1205 Geneva, Switzerland
        <sup>2</sup> CERN, CH-1211 Geneva 23, Switzerland
        <sup>3</sup> INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
        <sup>4</sup> INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
        Niels Bohr Institute, University of Copenhagen, Blegdamsvei 17.
          2100 Copenhagen, Denmark
        <sup>6</sup> King's College London, Strand, London WC2R 2LS, UK
        Institute of Physics, University of Silesia, 40-007 Katowice, Poland
        <sup>8</sup> Faculty of Science, University of Hradec Králové, Czech Republic
        <sup>9</sup> Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
       Massachusetts Institute of Technology, 77 Massachusetts Ave,
          Cambridge, MA 02139, USA
       <sup>11</sup> University of Edinburgh, , Department of Physics and Astronomy, Old College,
          South Bridge, Edinburgh EH8 9YL, UK
       <sup>12</sup> CEA/DRF/IRFU/DPhP, Gif-sur-Yvette & Université Paris-Saclay, France
       <sup>13</sup> Deutsches Elektronen-Synchrotron, DESY, 15738 Zeuthen, Germany
       <sup>14</sup> INFN, Sezione di Pisa, Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
```

How will the Q&A document be distributed?

- A preliminary version has been distributed privately just before Granada
 - ◆ To the FCC-ee physics coordination and a few (~100?) key persons
 - With a "confidential" warning to ensure even wider distribution ©
- The current version is an internal reference document
 - A couple sections are still in the writing;
 - A number of comments are still to be included;
 - But you can share it in private, e.g., to support your points in strategic discussions
- When complete, the document will be made public ...
 - arXiV or cds? we'll see what is best
 - The document is not expected to last much longer than the strategy process itself.
- ... and will be used to reach out
 - To inform European Strategy discussions;
 - ◆ To develop the FCC-ee international network.