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Little String Theories

Over the last decades string theory has provided insights into strongly coupled quantum systems

Specifically: prediction of existence of new interacting conformal field theories in dimensions D > 4
e.g.: [Seiberg 19961

String theory suitable decoupling of .qua.n’rum field theory
- extended objects - > - point-like degrees of freedom
- gravitation gravity - well defined energy momentum tensor

String theory also predicts the existence of new ‘non-local theories’, e.qg. little string theories (LSTs)
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[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vata 20161 different approaches: [Witten 19951
LAspinwall, Morrison 19971
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Rich class of examples realised in 11~ Uaghighat, labal, Kozsaz Lockhart, Vafa 20131 Untriligator 19971
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Parallel M9-branes

M-branes (M2- and M3) are extended in objects in 11-dimensional M-theory
They can be arranged in a fashion to preserve (some amount of) supersymmetry: brane webs

*  String-like objects arise at the intersection of M9- and M2-branes

/ﬂ /_\ stretched M2-branes
flr=rier M-string provide description of
il

12577 | €€ (almost) tensionless strings in 6. dim.

relevant for v = (2,0)SCFT
*  wmany dual realisations allowing to explicitly compute quantities (e.g. partition function)

notably: F-theory compactification on toric, non-compact Calabi-Yau threefolds

[Morrison, Vafa 19961

[Heckman, Morrison, Vafa 20131

[Pel Zotto, Heckman, Tomasiello, Vafa 20141
[Heckwman 20141

[Haghighat, Klemw, Lockhart, Vafa 20141

[Heckman, Morrison, Rudelivs, Vafa 20151
LSH, Igbal, Rey 20151
[Bhardwaj, Del Zotto, Heckman, Morrison, Rudelius, Vafa 20161



Parallel M9-branes

M-branes (M2- and M3) are extended in objects in 11-dimensional M-theory
They can be arranged in a fashion to preserve (some amount of) supersymmetry: brane webs

*  String-like objects arise at the intersection of M9- and M2-branes
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*  wmany dual realisations allowing to explicitly compute quantities (e.g. partition function)

M-string provide description of

a e (almost) tensionless strings in 6. dim.

relevant for A = (2,0)SCFT

---

notably: F-theory compactification on toric, non-compact Calabi-Yau threefolds

* depending on the details of the brane configuration, a large class of different Little Strings
(or their duals) can be realised and studied very explicitly

*  |ow energy limit associated with non-abelian supersymwmetric field theories
(mass deformed A" = 2* theories upon compactification fo 4 dimensions)

Class of theories exhibits interesting (and non-expected) dvalities! in this talk: triality



6-dimensional systems: - gravity is decoupled Little Strings
- have an intrinsic string scale
- obtained from type Il string theory through the decoupling limit

gst — 0 while gst = fixed

Little String Theories with 16 supercharges (A-series)

% 1IbLST of type An_1with N = (2,0) supersymmetry
-) decoupling limit of N M5-branes with transverse space S! x R4
-) decoupling limit of a stack of N NS5-branes in type 1A with transverse space R4
-) type lIB string theory on A ;1 orbifold backaround

A}ljenp-] Aq pajeja

* lalST of type An—1 with AV = (1, 1) supersymmetry j
-) decoupling limit of a stack of N NS5-branes in type I1B with transverse space R*

-) type l1A string theory on A nv_1 orbifold background

BPS states from the point of view of M3-branes correspond to M2-branes ending on them



6-dimensional systems: - gravity is decoupled Little Strings
- have an intrinsic string scale
- obtained from type Il string theory through the decoupling limit

gst — 0 while gst — fixed

Little String Theories with 8 supercharges: particular class obtained as

* 7 orbifold of lla LST of type Apr—1 with N = (1, 0) supersymmetry
-) decoupling limit of M M5-branes with transverse space S' x ALE 4, _,

-) decoupling limit of a stack of N NS5-branes in type 1B with transverse space R* /Z

A}ljenp-] Aq pajeja

* 7, orbifold of 1lb LST of type Ay with A7 = (1, Q) supersymmetry

-) decoupling limit of N MF-branes with transverse space S* x ALE,4,, .
-) decoupling limit of a stack of N NS9-branes in type lIA with transverse space R* /7,

Explicit computation of BPS partition function using various methods
[Haghighat, lqbal, Kozpaz, Lockhart, Vafa 20131

[Haghighat, Kozgaz, Lockhart, Vafa 20131

in this talk: LSH, Iqbal 20131
further dualities [SH, Iqbal, Rey 20151



Brane Configurations

The most general configuration of branes in M-theory in 11 dimensions looks like
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Brane Configurations

The most general configuration of branes in M-theory in 11 dimensions looks like
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with M2-branes stretched between them | /)
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A pne tensionful string going around S!
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limit where all M5-branes form a single stack

MbY-branes arranged on a circle R = —
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Brane Configurations

The most general configuration of branes in M-theory in 11 dimensions looks like
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infroducing complex coordinates (z1,22) = (z2 + iz3, x4 + iz5) and (w1, w2) = (z7 + ixs, 9 + iT10)
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gauge theory: Omega- background [Nekrasov 20121 mass-deformation




Dual Setups to Brane Configurations

For vanishing mass deformation (m = 0) the M-brane configuration is dval to P9-NS5-branes in lIB
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Dual Setups to Brane Configurations

For vanishing mass deformation (m = 0) the M-brane configuration is dval to P9-NS5-branes in lIB
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gauge theory
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| Peformation:
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(p,q)+plane transverse R3

(1,1) brane

uplift the deformed type Il configuration to M-th.
on an elliptically fibered Calabi-Yau threefold X 5,

[Leung, Vafa 19971

topic diagram of X v »s same as deformed brane web



Dual Construction of LSTs: Toric Calabi-Yau 3folds

Specific, 2-parameter series of toric, double elliptically fibered Calabi-Yau threefolds X v as
Toric Web Diagram:

* (N, M) web on a torus
* double elliptic fibration structure
with parameters (o, 7)
* 3NM different parameters representing
the area of various curves C of the CY3

= / w
G e e




Dual Construction of LSTs: Toric Calabi-Yau 3folds

Specific, 2-parameter series of toric, double elliptically fibered Calabi-Yau threefolds X v as
Toric Web Diagram:

hiv—1yN+2

* (N, M) web on a torus
* double elliptic fibration structure
with parameters (o, 7)

* 3NM different parameters representing
the area of various curves C of the CY3

U3N
han
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-) N M horizontal lines 1. v
-) N M vertical lines v1.... N
-) N M diagonal lines m1 . nas

* only NM + 2 independent
parameters due to consistency
conditions




Dual Construction of LSTs: Toric Calabi-Yau 3folds

Specific, 2-parameter series of toric, double elliptically fibered Calabi-Yau threefolds X v as
Toric Web Diagram:

* (N, M) web on a torus
* double elliptic fibration structure
with parameters (o, 7)
* 3NM different parameters representing
the area of various curves C of the CY3

di= / )
¢ T Kahler form

-) N M horizontal lines 1. v
-) N M vertical lines v1.... N
-) N M diagonal lines m1 . nas

h+m=h +m’

v+m' =m+

* only NM + 2 independent
parameters due to consistency
conditions

different possible choices for
set of independent parameters



BPS States and Topological String

Free Energy: Counts number of BPS configurations, i.e. M2-branes wrapping holomorphic
curves on the CY3 X »s. Captured by topological free energy Fiv pr = In Zn s 0f Xy s

[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131

[Haghighat, Kozcaz, Lockhart, Vafa 20131
[SH, lgbal 20131

Compute the topological string partition function Zx as using the refined topological vertex
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BPS States and Topological String

Free Energy: Counts number of BPS configurations, i.e. M2-branes wrapping holomorphic
curves on the CY3 X »s. Captured by topological free energy Fiv pr = In Zn s 0f Xy s

[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131

[Haghighat, Kozcaz, Lockhart, Vafa 20131
[SH, lgbal 20131

Compute the topological string partition function Zx as using the refined topological vertex

-) assign trivalent vertex to each intersection
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BPS States and Topological String

Free Energy: Counts number of BPS configurations, i.e. M2-branes wrapping holomorphic

curves on the CY3 X »s. Captured by topological free energy Fiv pr = In Zn s 0f Xy s

[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131
[Haghighat, Kozeaz, Lockhart, Vafa 20131
[SH, lgbal 20131

Compute the topological string partition function Zx as using the refined topological vertex
1

-) assign trivalent vertex to each intersection Notation: e
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BPS States and Topological String

Free Energy: Counts number of BPS configurations, i.e. M2-branes wrapping holomorphic
curves on the CY3 X »s. Captured by topological free energy Fiv pr = In Zn s 0f Xy s

[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131
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Compute the topological string partition function Zx as using the refined topological vertex

-) assign trivalent vertex to each intersection
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BPS States and Topological String

Free Energy: Counts number of BPS configurations, i.e. M2-branes wrapping holomorphic

curves on the CY3 X »s. Captured by topological free energy Fiv pr = In Zn s 0f Xy s
[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131

[Haghighat, Kozcaz, Lockhart, Vafa 20131
[SH, lgbal 20131

Compute the topological string partition function Zx as using the refined topological vertex
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-) assign trivalent vertex to each intersection
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must be common to all vertices of diagram 1
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3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W2 ({v}, {m})




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips
building block: WV ({h}, {m})




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips
building block: WV ({h}, {m})

3) diagonal: decompose diagram into diagonal strips

: where k& = ged(N, M)



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips a 7
building block: W2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips X & _(

building block: WE‘;:E‘NN ({h}, {m}) /

by Bz

[e%) ag

3) diagonal: decompose diagram into diagonal strips : : / “:
building block: Wﬂl.ﬁ'jﬁ; ({h}, {v}) :
generic form of the building block 1/
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3 different choices for the preferred direction: R
7 \

1) horizontal: decompose diagram into vertical strips a
building block: W2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips X & _(

building block: W52+ ({R}, {m}) > fei
3) diagonal: decompose diagram into diagonal strips : : / :
building block: WB iiscenn wpe (810D o
generic form of the buﬂdmg block 1/ a
L a Jif
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Topological Partition Function
The full partition function is obtained by gluing together the building blocks Wg‘ll
. N M
caaiedes Z( H —ui; |a;|) Wa” L
e ik 7 T

parameters used to glue the strips together

Different choices of preferred direction afford different (but equivalent) expansions:

2y (R}, o}, {m}, e12) = Zp({o}, {m}) 3 e PP Ze({v}, {m}) = 200
k

= Z,({}, {m}) Z e *Y Z.({n}, {m}) = 2™

Zp({h}, {v}) Ze o7y )= 2

common normalisation factor (perturbative partition function)

Compare different series expansions with instanton partition functions of quiver gauge theories.
Need fo choose independent Kahler parameters of X n ar



Pases of independent Kahler parameters

For each of the expansion we can choose a svitable set of VA1 + 2 independent Kahler parameters:

Example: (N, M) = (3,2)
1) horizontal: (p,/b\l,/é)\g; C1,C2,C3; T, E)
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Pases of independent Kahler parameters

For each of the expansion we can choose a svitable set of VA1 + 2 independent Kahler parameters:
Example: (V, M) = (3,2)
1) horizontal: (p,b1,b2;¢1,¢2,65; 7, E)
series expansion: p — by — by — oo
Bl io0 1 ; :
by b o0
gavge theory: U(2) x U(2) x U(2)




Pases of independent Kahler parameters

For each of the expansion we can choose a suitable set of VA + 2 independent Kahler parameters:

Example: (N, M) = (3,2)
1) horizontal: (p,b1,b2;¢1,¢2,65; 7, E)
series expansion: p — by — by — oo
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gavge theory: U(2) x U(2) x U(2)

2) vertical: (T, 51;31,/52,33,34; p, D)

hs

V6

me

h3

(A

D =mi+my

he



Pases of independent Kahler parameters

For each of the expansion we can choose a svitable set of VA1 + 2 independent Kahler parameters:
Example: (N, M) = (3,2)
1) horizontal: (p,b1,b2;¢1,¢2,65; 7, E)
series expansion: p — by — by — oo 3
b —» o0

bg T mOLD, G
gavge theory: U(2) x U(2) x U(2)

2) vertical: (T, 51;31,/52,33,34; p, D)

series expansion: 7 — ¢; — o©
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gavge theory: U (3) x U(3)




Pases of independent Kahler parameters

For each of the expansion we can choose a suitable set of VA + 2 independent Kahler parameters:

Example: (N, M) = (3,2)
1) horizontal: (p,b1,b2;¢1,¢2,65; 7, E)
series expansion: p — by — by — oo
b —» o0

bg T mOLD, G
gavge theory: U(2) x U(2) x U(2)

2) vertical: (T, 51;31,/52,33,34; p, D)

series expansion: 7 — ¢; — o©
/C\Q F AT ARG )

gavge theory: U (3) x U(3)

3) diagonal: (V, 51,62,53, 84, 65; M, F)

V=mid (83— 1)(h1+ hs) + (3 —2)(v2 + hs + ve + hs)



Pases of independent Kahler parameters

For each of the expansion we can choose a suitable set of VA + 2 independent Kahler parameters:
Example: (N, M) = (3,2)

1) horizontal: (,0,/[)\1,/52; C1,C2,C3; T, E)

series expansion: p — by — by — oo v
bl S A9, : hs
bg w3 oy TP, 9%, A
gavge theory: U(2) x U(2) x U(2) E:
SEeme ees o VI
2) vertical: (7,¢C1; b1, b2, b3, by; p, D) ha
series expansion: 7 — ¢; — 00 ¢ 3 o
/C\Q FAE AR SO hs
gavge theory: U (3) x U(3) ER% Gl B B
3) diagonal: (V'; a1, a», as, ay,as; M, F) 2 — 1
. . v 4
series expansion: V — oo hs

gavge theory: U (6)

V6

hs

Similar sets of independent Kahler parameters

proposed for generic (N, M) et R



5d Quiver Gauge Theory Intferpretation

1) horizontal: (p,@l,@; 1,6, ¢3;7, B) : U(2) x U(2) x U(2) quiver gavge theory
* Zﬁi’f) series expansion in e27i(P—b1—b2) 2mib1 5 g 27ibs ()
related to the instanton parameters

* C1 23 inferpreted as simple, positive roots of three copies of 01 @
* T interpreted as (common) imaginary root extending a;to @
2) vertical: (7,21;1, b2, b3,b4; p, D) : U(3) x U(3) quiver gauge theory
* Z\(,‘z;f) series expansion in €277 —C1) and e2™ 1 polated to

| the instanton parameters @’@
* by 93 4 interpreted as simple, positive roots of two copies of ao
* T interpreted as (common) imaginary root extending as to as
9 diagonal: (V'; @1, @2, as, as,as; M, F') gauge theory with gauge group U (6)

2mV

(3,2) : : wiab ;
* Zdiag can be written as a series expansion in € related to the instanton parameters

* @1 234,5interpreted as simple, positive roots of as
* F interpreted as imaginary root extending 05 to Qs

Horizontal and vertical gauge theory interpretation well known in the literature

[Haghighat, lqbal, Kozgaz, Lockhart, Vafa 20131
[Haghighat, Kozeaz, Lockhart, Vafa 20131
LSH, Igbal 20131



5d Quiver Gauge Theory Intferpretation

1) horizontal: (p,@l,@; 1,6, ¢3;7, B) : U(2) x U(2) x U(2) quiver gavge theory
* Zﬁi’f) series expansion in 27 (P01 7b2) 2mibi g o2mibs ()
related to the instanton parameters
* C1 2.3 interpreted as simple, positive roots of three copies of a1 @

* T interpreted as (common) imaginary root extending a;to @
2) vertical: (7,21;1, b2, b3,b4; p, D) : U(3) x U(3) quiver gauge theory

* Z\(,‘z;f) series expansion in €277 —C1) and e2™ 1 polated to
| the instanton parameters @’@
* by 93 4 interpreted as simple, positive roots of two copies of ao
* T interpreted as (common) imaginary root extending as to as
9) diagonal: (V'; @1, G2, a3, a4, as; M, F') gauge theory with gauge group U (6)

272V olated to the instanton parameters

(3,2) : : i
* Zgia, canbewritten as a series expansion in €
* @1 234,5interpreted as simple, positive roots of as
* F interpreted as imaginary root extending 05 to Qs

Horizontal and vertical gauge theory interpretation well known in the literature

Piagonal expansion leads to novel gauge theory associated with Xy 5/ Triality!
[Bastian, SH, lqgbal, Rey 20171



Flop Transitions and Duality

Flop transition for any two curves in the diagram:

Example: Series of flop and SL(Z,Z) transformations for X3 o ~ X 1  1h lobal, Rey 20161




Flop Transitions and Duality

Flop transition for any two curves in the diagram:

Example: Series of flop and SL(Z,Z) transformations for X3 2 ~ X¢ 1 sk gbal Rey 20161

Duality leaves partiton function invariant
Zzo({h}, {v},{m},e12) = Ze1({R'}, {v'}, {m'}, €1.2) CBastian, SH, Iqbal, Rey 20171

it

Kahler parameters implied by duality transformation

Vertical expansion of Zg 1 gives rise to a gauge theory with gauge group {7 (6) and part. fet. ZS,S;% )

Symwetry transformations do not flop any curve whose area is proportional to VV

§Emscsi

related to coupling constant of Zc(l?a’é)



Flop Transitions and Duality

Flop transition for any two curves in the diagram:

Example: Series of flop and SL(Z,Z) transformations for X3 2 ~ X¢ 1 sk gbal Rey 20161

Duality leaves partiton function invariant
Zzo({h}, {v},{m},e12) = Ze1({R'}, {v'}, {m'}, €1.2) CBastian, SH, Iqbal, Rey 20171

it

Kahler parameters implied by duality transformation

Vertical expansion of Zg 1 gives rise to a gauge theory with gauge group {7 (6) and part. fet. ZS,S;% )

Symwetry transformations do not flop any curve whose area is proportional to VV

——> partition functions Z éf’;? and Z‘(,Sli% ) have same asymptotic expansion



Generalisation to (N,M)

Conjecture: dualities between Calabi-Yau threefolds X n psr ~ X/ pg

for ged(N, M) = ged(N', M)
NM = N'M'

example: X 5
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Generalisation to (N,M)

Conjecture: dualities between Calabi-Yau threefolds X n psr ~ X/ pg
for ged(N, M) = ged(N', M)
NM = N'M’

example: Xg 5~ X10,3

~ X152 ~ X301 ~ X556
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Consequences for General Configuration (N,M)

Extended moduli space of X v as:

NM = N'M'
X Y X / /
AP foe gcd(N, M) = ged(N', M)
Partition function invariant [SH,Igbal, Rey 2016]
ZN,M({h}7 {U}a {m}, 61,2) = ZN’,M’ ({h/}, {U/}, {m’}, 61,2) (partial) proves: [Bastian, SH, lgbal, Rey 20171
[Haghighat, Sun 20181

walls of Kéahler cones

intermediate Kahler cone(s) that are passed through
in the series of flop- and symmetry transformations

connecting Xy v and Xy v



Consequences for General Configuration (N,M)

Extended moduli space of X v as:

NM = N'M'
X Y X / /
AP foe gcd(N, M) = ged(N', M)
Partition function invariant [SH,Igbal, Rey 2016]
ZN,M({h}v {U}a {m}, 61,2) = ZN’,M’ ({h/}, {U/}, {m’}, 61,2) (partial) proves: [Bastian, SH, lgbal, Rey 20171
[Haghighat, Sun 20181

Weak coupling regions within given Kahler cone:

quiver gauge theories with gauge groups
Ghor = [UM)]Y J\
T‘dua"fv [l o0

Gyert = [U(N)]M

Gaiag = [UNM/E)]* for k= ged(N, M)

represent low energy limits of LSTs

triality of LSTs



Dihedral Symwetries of Configuration (N,1)

Web of dvalities among different theories can be turned into symwmetries for individual theories
LSH, Bastian 20181

Example (N,M)=(2,1):

1
S2 i S5 ! o5
h my dval web diagrawms hy A
a 9 a 2
! =D
e Sl Q; /\ 2 Sl %/
SQ h2 mo Sé h2 o1

S, 1 S
Al /s " : W e ey
= T / Sy & T : / Sy
mo 2 V1 o
s g
T — (U1 o Qs = vy + hi, a; =my + hy, a5 =mo + ha,
S =ho+ v+ hy, R—-25=my —vy. S’:h2+m1—|—h1, R/—2S/:’U2—m1.
Implies the following symwmetry of the partition function:
@ a Eed NmRe Su ] i
o (i umi B mesy , Sl heaE
= where Gi = with
R R’ 6001t



Generalising to include other dvality transformations:

1 e
a ha A ’\2‘ ] ]].4)(4 Gl G2 G3
mo ho vy \ ]14)(4 ]14><4 Gl G2 G3
e Al G e & e
| > 2 ) 1 i) 3 5
R e pRm Sraziozeils
G = 8 (1) _? } \b Go Go Gs M4%a G4
B0 1B Gs G 6 Gl

o5 1 e Group Structure:
(1) (1) 0 8 - {]14><47G1aG27G3} nghQ
T 0 dH Y G, \
2 9 1

N = O =
N~ = O
|
[\
— = =




Generalisation to (N1): Symwmetry group

(D i e

. by

G(N) >< where G(N) = < B
e | Diho | if N4

Shuffling’ of roots

Explicitly

G(N) = ({G2(N), G5(N)|(G2(N))? = (G5(N))? = (G2(N) - gé(N)}@— 1})
{ Sijfora M =
e = AR (46016 ot P M=
oo for N >4
withthe (N + 2) x (N + 2) wmatrices

/ 0 0\ ( —9 1\

Inxn : : ! Iy ynens

Ga2(N) = G and  Gy(N) = T
jJE= A RaR Enn B e Bl b Ay fgsuRssENalar) ieangangy)
v o) S8 aeaatenber, Ben 1208 BE



Conclusions and Further Directions

Studied dvalities in a class of Little String Orbifolds:

* efficiently described by dval F-theory compactification on a class of toric CYfolds X v as
*  partition function Zx 5, compute as topological string partition function on X, ns
*  Kahler cone of X s contains three weak coupling regions in which web diagram
decomposes into parallel strips
*  weak coupling regions give rise o different (but equivalent) expansions of Zx rs that can
be interpreted as instanton partition functions, realising a triality of 9dim quiver gauge th.:
G UM e G TN e G — (U 1E for ok —acd N iV
*  further dualities: (UMY <= UMY for g}g{; ﬁ;ﬂf (Nl )
*  implies (dihedral) symwmetries of the partition function
Future directions:
* study implications of triality on W-algebras associated with AGT dual theories
* Generalisation to other LSTs than A-series
*  study extended web of dualities by considering further weak coupling regions in the

extended moduli space of x , ,,



