
2019-03-25

C++ Meeting Trip Report Axel Naumann

Axel Naumann, ACAT 2019

Background

❖ C++ evolution defined by ISO committee

❖ Your CERN representative - but really ours: HENP’s!

❖ Kona was C++20 feature-freeze

❖ Remember C++98 → C++11?

!2

C++ 2.0

C++ 2.0

Axel Naumann, ACAT 2019

Overview

❖ Process

❖ Big features and where they matter

❖ Little features and where they matter

❖ What does Axel do?

❖ The Future

❖ Conclusion

!5

Process

Areas of Work

❖ Evolution in several areas, in parallel.
Several just missed C++17. Many major
features ended up in C++20.

❖ Features are proposals or Technical
Specifications (TS)

C++ Technical Specifications

❖ Major work items are sometimes
progressing outside the standard:

❖ TS allows to test-drive

❖ gain implementation + usage experience
before entering the standard

Axel Naumann, ACAT 2019

C++ 20 and TSes
❖ Merging

❖ Modules

❖ Co-routines

❖ Concepts

❖ Ranges

❖ Many almost ready for C++17 - and C++20 became the TS treasure chest!

❖ … and there is still more!

!9

Axel Naumann, ACAT 2019

Study Groups

❖ Focus on topics before sending recommended proposals to rest of committee

❖ New-ish ones: GUI, Low Latency, Tooling, Unicode, Machine Learning (incl
linear algebra), Education

!10

Small Features

Axel Naumann, ACAT 2019

❖ (string) literals as template
parameters

❖ more constexpr, consteval

❖ class template argument deduction

Selection of small features in C++17, 20

✤ span

✤ format

✤ optional + variant (C++17)

✤ structured binding (C++17)

✤ if constexpr (C++17)

✤ if with variable declaration (C++17)

!12

Axel Naumann, ACAT 2019

Too much!

❖ Selected most relevant ones

❖ For the rest: check CppCon + MeetingCpp + CppNow

!13

https://www.youtube.com/channel/UCMlGfpWw-RUdWX_JbLCukXg
https://www.youtube.com/channel/UCJpMLydEYA08vusDkq3FmjQ
https://www.youtube.com/playlist?list=PL_AKIMJc4roVSbTTfHReQTl1dc9ms0lWH

Axel Naumann, ACAT 2019

❖ (string) literals as template
parameters

❖ more constexpr, consteval

❖ class template argument deduction

Selection of small features in C++17, 20

✓ span

✓ format

✓ optional + variant (C++17)

✓ structured binding (C++17)

✓ if constexpr (C++17)

✓ if with variable declaration (C++17)

!14

✓ = covered here

Axel Naumann, ACAT 2019

if with variable declaration (C++17)

❖ Fixes scope of if-condition variables, compared to earlier:  

!15

if (auto v = f(); !v.get())

auto v = f();
if (!v.get()) {
 // but I need v only in here...
}

Axel Naumann, ACAT 2019

if with variable declaration (C++17)

❖ Fixes scope of if-condition variables, compared to earlier:  

!16

if (auto v = f(); !v.get())

auto v = f();
if (!v.get()) {
 // but I need v only in here...
}

Axel Naumann, ACAT 2019

if constexpr

❖ Does not compile the branch if false

❖ Valid code for T being bool despite v.begin()

!17

template <class T>
void *begin_if(T& v) {
 if constexpr (is_container<T>)
 return &*v.begin();
 return nullptr;
}

Axel Naumann, ACAT 2019

Structured Binding

❖ Great way of “receiving” multiple (2, 3, 4,…) struct members or tuple<>
elements

❖ Handle multiple values being passed in for or if statements

!18

for (auto && [k,v] : myMap) {
 cout << "key: " << k
 << "val: " << v << '\n';
}

Axel Naumann, ACAT 2019

optional, variant

❖ std::optional: holds one or none

❖ std::variant: holds one of a set (union)

❖ C++20 will possibly also have std::expected: value or error

❖ Extremely powerful for writing safe, compact code

!19

variant<double, string> v{17.};
assert(get<double>(v) > 16);
v.emplace<string>("ABC");
cout << get<1>(v); // good!
get<0>(v); // throws!

Axel Naumann, ACAT 2019

span

❖ Whether std::vector, std::array or C-style array

❖ Refers to a contiguous array of given size

❖ Wonderful as function parameter

❖ Fixed-size or runtime-size

!20

void func(span<double,4> lv);
array<double, 4> jetLV{...};
func(jetLV);

Axel Naumann, ACAT 2019

format

❖ Not yet guaranteed for C++20 - but expected!

❖ An efficient and nice way to format strings in C++, finally

❖ printf-format plus so much more

❖ Incl. user-extensible: format your classes

!21

string message = format("The answer is {}.", 42);

Big Features

BIG FEATURES

Axel Naumann, ACAT 2019

❖ Coroutines

❖ std::filesystem (C++17)

Big C++ features since C++14

✓ Contracts

✓ Concepts

✓ Ranges

✓ Modules

✓ <=>

!24

✓ = covered here

Axel Naumann, ACAT 2019

Contracts (1/3): Intro

❖ Specify what your function expects

❖ Can be checked by compiler

❖ Check can be turned off

❖ Also enables optimizations

!25

Axel Naumann, ACAT 2019

Contracts (2/3): Setting Expectations

❖ expects (or “pre”?): condition on arguments

❖ ensures (or “post”): post-condition, a guarantee by the function

❖ assert: a check to be performed within the function

!26

int f(int i) [[expects: i > 0]];
int g(string& s) [[ensures: !s.empty()]] {
 [[assert: s.empty()]]
 s = "ABC";
}

Axel Naumann, ACAT 2019

Contracts (3/3): Validating Expectations
❖ Contract levels default, audit, axiom; compiler flag selects what to check:

❖ --default: checks default

❖ --off: nothing

❖ --audit: default and audit

❖ axiom is thus never checked: good for optimizer hints; expensive checks can
be audit

!27

int f(int i) [[default pre: i > 0]];
int g(int i) [[audit pre: i > 0]];
int h(int i) [[axiom pre: i > 0]];

Axel Naumann, ACAT 2019

Concepts
❖ Document and restrict template parameters

❖ Better error messages

❖ User-Oriented feature for library authors, i.e. us!

!28

template <ConvertibleTo<string> T>
 class DoesSomethingWithAString;

Axel Naumann, ACAT 2019

Ranges
❖ Generalized iterators working on everything that has a begin

❖ Much, much nicer syntax

❖ More than just syntax: a way of writing algorithms without mentioning data!

❖ Note use of | to pipe into filter; use of range as boolean expression

!29

if (auto evens = vec | view::filter(is_even)) {
 // Do something with an even number.
}

Axel Naumann, ACAT 2019

Modules

❖ Dramatic build time reduction

❖ Hides implementation details, similar to header / source

❖ See “Migrating large codebases to C++ Modules" by ROOT team’s Yuka
Takahashi on Wednesday, 19:00, Track 1!

!30

https://indico.cern.ch/event/708041/contributions/3276196/

Axel Naumann, ACAT 2019

Spaceship <=>

❖ finally a default comparison!

❖ reduces code clutter and bugs

!31

class A { int i; };
bool operator==(A, A) {...}
bool operator!=(A, A) {...}
bool operator>(A, A) {...}
bool operator<(A, A) {...}
bool operator>=(A, A) {...}
bool operator<=(A, A) {...}

Axel Naumann, ACAT 2019

Spaceship <=>

❖ finally a default comparison!

❖ reduces code clutter and bugs

!32

class A { int i; };
bool operator==(A, A) {...}
bool operator!=(A, A) {...}
bool operator>(A, A) {...}
bool operator<(A, A) {...}
bool operator>=(A, A) {...}
bool operator<=(A, A) {...}

class A {
 auto operator<=>(A) const = default;
 int i;
};

Axel Naumann, ACAT 2019

Summary

❖ C++20 will change how we write code

❖ Goals are simplicity, 0-cost, faster programs, common features in the library

❖ Implementations are on their way, most of C++17 already available

!33

What did Axel do?

Axel Naumann, ACAT 2019

Reflection TS

❖ N4766 
 
 
 
 
 
 

❖ Accepted by ISO members, to be published in 2019

!37

https://wg21.link/N4766

Axel Naumann, ACAT 2019

Hours of Discussions

!38

Axel Naumann, ACAT 2019

And Evenings / Nights?
❖ Spent my nights updating the wording  
 
 
 
 
 
 

❖ And preparing my straw poll vote for modules, co-routines

!39

Conclusion

Axel Naumann, ACAT 2019

Outlook

❖ C++23 will be much smaller

❖ Implementing language features for library where needed: stdlib modules,
more concepts

❖ Several major features did not make it: networking, executors

❖ More features in the works, e.g. reflection

!41

Axel Naumann, ACAT 2019

Conclusion (1/2)

❖ C++ learned a lesson: evolve or be dead

❖ Relevant to us: better, more maintainable code

❖ We won't need all features, but we have a palette to select from

!42

Axel Naumann, ACAT 2019

Conclusion (2/2)

❖ Many features are targeted at us: math special functions (C++17), ranges,
concurrency, compile times of large-scale code

❖ We should benefit from what the language and its tools provide

❖ We need to evolve tooling and code to benefit

❖ Need to upgrade our coding guidelines, selecting “allowed” features:
contracts? concepts? coroutines?

!43

