Moedal: ML 8th +14th feb

I.millward@qmul.ac.uk

New Labeled data

	Old	New
Total Pits	615	1393
Canidates	52	259
Top, surf	90	199
Bottom, sur	363	811
Misc	110	80
Maybe		44

Loosened Candidate threshold New 'Maybe' catergory

For consistency will re-label old data-set Clearly labelling style has changed • Heuristic

- ~ 500 examples per class for smooth training
- Now within range
- Can repeat old studies
- Prior problem hitting statistical fluctuations Caused large systematic problems w learning

PreSelection only has ~5% False Pit ID

Top Vs Bottom Surface

• Simple problem, Used as benchmark previously when signal low. T vs B , ultimately ~ intensity gradient

Demonstratable improvement in Stability and Learning

2D image recogntion, in single channel

- No overtraining divergence!
- NB# Not generalisable result since top + bottom alone doent represent full problem domain

Adam Optimiser .0001 lr

Eg, Signal VS top + botom

- Much Smoother Training
- Statistical fluctuations / noise an sctill be seen in the smaller validation set (orange)

2D image recogntion, in single channel

- Accuracy ~ 90-95% # Not same as sig eff,
- No overtraining divergence
- NB# Not generalisable result background doent represent full problem domain

Adam Optimiser .0001 lr

Issues

- Previous 'Failure mode' No / minimal signal, High uncertainty over signal samples
 Bias towards background classification
- 'Binary Accuracy' poor metric for moedal want strong signal acceptance preference Long term → custom loss function
- Short term, Balance sig vs bkg Remove background, or Augment signal
- Generally observing good performance However sometimes network 'Fails' to learn, doesnt learn any consistent pattern / rules in training or validation

- Double checked Training, Testing,Validation
- Not overtraining, consistent convergence without major test train divergence
- Hypothesis, could be 'bad' data examples, that dont provide consistent rules to learn from / nonrepresentative

5 fold cross-validation

Divergence in learning behavior. Unpredictable

Training, Validation

All models, inc good ones do better at background rejection Than signal acceptance – We would really like Signal Acceptance

Conclusion

- 'Consistent' accuracy ~ 90% (neglecting Outlying trainings) Inc completely unseen data
- Consistently better at rejecting / classifying background than accepting signal # Seen in multiple runs # Suggests 'Signal as Anomaly' hypothesis – could be useful V. Good False-positive rate boosts 'nominal' score, But balances poorer True-positive, False-negative
- Would rather MAX T-P

Questions / next

- Multi-Class labelling maybe Bkg is too easy to spot / biased
- Test 3 / 4 way labelling

 What happens if include all channels as examples of the releavnt class? How important is angle

- Hyper-params, parameter scans
- Different optimisers
- Depth /2d,3dK,3dC

- Go back to patches / large area labelling
- Can we spot 'sig' anomalies