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● Dirac monopole [1931]

pointlike singularity 
modelled as 
infinitely long 
solenoid 
‘dirac string’ 

● T’Hooft-Polyakov [1973] GUT

Topological soliton 
in fundamental 
gauge fields in 
theories with 
broken symmetries.

● Cho, Maison [1996] EW 
modifications to SU(2) x U(1) electro-weak 
theory possibly allows TeV monopoles
hybrid of Dirac / T’Hooft 

● Dyons, magnetic and electric  

Magnetic Monopoles 
Many different predictions; Common properties;

● Acts like particle with magnetic 
charge. EM interaction with much 
stronger coupling! gD ~ 68.5e

● Mass ~ varies by theory, uncertain
Unconstrained for Dirac monopoles
EW 4~10TeV,  Tevatron > 600GeV

● Explains charge Quantisation, 
possibly baryon asymmetry, early 
cosmos

● Stable if topological solitons

= Heavy, Stable, Highly Ionising  
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● Detectors optimised 
triggering on ~ light speed particles, minimally 
ionising / penetrating

● High bunch crossing rate, most events discarded

● Rare HIP signal, can look like v. common 
backgrounds 

Exotics and HIPs 
Monopole signal = Heavy, Stable, Highly Ionising
Similar exotics;

● Stable Massive particles
SUSY; stops, staus, gluinos
(esp. if parity conserved)

● Multi-Charged particles
eg, double charged Higgs
Bilepton

● High momentum + low velocity, 
high ionisation, indicates 
heavy charged BSM object

HEP

HIPs

LEP
Low energy particles

/ Nucleons 
/ secondary products
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Fig. 27.1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders
of magnitude in kinetic energy). Solid curves indicate the total stopping power.
Data below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data
at higher energies are from Ref. 5. Vertical bands indicate boundaries between
different approximations discussed in the text. The short dotted lines labeled
“μ− ” illustrate the “Barkas effect,” the dependence of stopping power on projectile
charge at very low energies [6].

27.2.2. Stopping power at intermediate energies :
The mean rate of energy loss by moderately relativistic charged heavy particles,

M1/δx, is well-described by the “Bethe-Bloch” equation,
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It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for
intermediate-Z materials with an accuracy of a few %. At the lower limit the
projectile velocity becomes comparable to atomic electron “velocities” (Sec. 27.2.3),
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MMTs
Aluminium ferromagnetic 

monopole trappers

MoEDAL detector 

NTD array + VHCC
Ionisation detectors

(rest of this talk)

Timepix
Radiation environment 

monitoring

MAPP
Millicharged

particle detector

LHC
IP:8
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● Ionising particles break polymer 
chains in NTD foil in localised region

● Leaves latent ‘Ion track’

● Chemical etching process occurs 
faster along ion tracks than bulk 
medium

● Forms ‘etch-pits’ where ionising 
particles entered and exited the foil

Stacked Arrays of ionisation sensitive polymer solid state nuclear track detectors (NTDs)
Sensitive to Heavily Ionising Particles, low sensitivity to standard model particles

Moedal: NTD arrays

NANOSCOPIC MICROSCOPIC
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1. Initial High energy 
causes minimal 
ionisation. Doesn't show 
up as etch pit

2. Particle loses energy, 
lower velocity, efficient 
‘electronic’ ionisation. 
‘Ranging in’ 

3. Reaches peak energy 
loss
larger etch-pits form at 
point of entry and exit

4. Energy loss, ‘electronic’ 
ionisation ceases, etch-
pit formation stops. 
‘Ranging out’ 

Courtesy INF Bologna

Particles in NTD stack

Standard Model Ionisation Behavior
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Courtesy INF Bologna

BEYOND

Particles in NTD stack

1. Initial High energy 
causes minimal 
ionisation. Doesn't show 
up as etch pit

2. Particle loses energy, 
lower velocity, efficient 
‘electronic’ ionisation. 
‘Ranging in’ 

3. Reaches peak energy 
loss
larger etch-pits form at 
point of entry and exit

4. Energy loss, ‘electronic’ 
ionisation ceases, etch-
pit formation stops. 
‘Ranging out’ 

Anomalously large ionisation 
appears in all layers

Approx no β dependance
 ~ TeV Energy Momentum 

Primary vertex origin
Direct search

No SM background

Standard Model Ionisation Behavior
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Theoretical
parameter 

space

Non-Linear
Magnetic charge 
EM interactions

 

multiple β dependant 
Particle – Polymer interactions 
HIP goes through all β regimes

LHC nuclear spallation 
Showers, detector 

systematics
 
 

#1: Training / Modelling

Non-Linear  
chemical 

etching process

● Large variability, huge uncertainties, 
many parameters. First principles 
modelling / Monte-Carlo impractical

● No ‘real’ magnetic monopole 
examples to train from

● Can simulate HIP signal in given foil 
layer with calibrated heavy ion beam 

● Different ions for different parts of 
possible energy spectrum

● Realistic signal examples require 
presence of real background

Test beam only LHC backgrounds
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● Problem changes as density increases,
● Images represent ~mm2 

Millions of etch-pits in each cm2

● O(100) m2 macroscopic foil area  

Trillions of etch-pits total

#2: Background density

CR39, Heavy ion test beam 2yrs LHC background
pile-up 

Makrofol, heavy ion test beam
+ 8 months LHC background

● Foil structure altered by γ – rays
changes detector response

● Etch-pit clusters merge under 
etching

● Foil thickness fluctuates 

LHC Exposure
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#3: Accurate identification

Strong Visual Symmetry 
between different physics 

objects / backgrounds

Entry Exit pair? 
Background cluster?

Want to find peak ionisation events

● LHC particle flux; all different SM 
ionisation behaviour happening

● Pits start to cluster and overlap
● Accurate ID requires detailed 3D 

inspection. Incompatible with rapid 
automated scanning

● Supervised learning requires 
accurate labelling. Have to locate  

Example

Need robust ~99% signal efficiency
      and ~99% background rejection
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3D Dark-field imaging 

Entry exit pairs 
look different to 
overlapping bkg

Resolve different 
3D structures

Spot anomalies eg;
connected entry exit
or heavy ionisations 
that etch all the way 
through

X, Y, Phi becomes 
3d data-space

Animation
In-phase rotation
common origin

Opposite phase
possible entry exit

ML / CNN sees all 
angles at once

Example

● CAN parametrise 
illumination angle

● LED grid, passing through 
Fresnell lens. Allows control 
of θ , φ

● Retain microscopic focal 
plain alignment over 
macroscopic area

● Want to probe microscopic 3D 
structure to understand particle 
event interpretation

VS

● Want to rapidly scan 
macroscopic area with 
minimal motion and
large field of view  

       φ

       θ
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Convolution kernel search for patterns of 
interest in 3D data space

Pre-select etch-pits, reject trivial 
backgrounds, reduce labelling, 
storage, requirement ~ 1000

ML – Training / Analysis 

1

2

3

4

“Normalisation” - Redefine relative to 
 local zero, ‘clean’ up low ionisation pits / 
 de-clutter. Remove systematic imaging 
 biases + non-etch pit visual backgrounds

Build supervised ML dataset from 
preselection. Train sub-classifiers, 
eg, entry exit asymmetry ~ dE/dx
can replace initial search with learnt 
models 
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ML – Ensemble + inference 
● Train specialist experts to handle 

specific sub-classifications 
eg, B vs C

Eg, top / bottom surface biased 
ionisation indicating SM range in/out

● Combine in Ensemble

● Hetrogenous  vs Homogenus
(classifiers trained on different 
tasks with different data)

● Geometric combination
C’ = C1* C2

vs arithmetic   
C’ = aC1+ bC2

Can extend further and use 
a dense neural network to 
form the ensemble 

Can use in inference to label 
new areas of foil,  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

