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Introduction

* Nb;Sn strands are prone to crifical current degradation under the effect of
mechanical strains

— Degradation can be produced both with axial and transverse strains
— A similar effect was also measured on Rutherford cable stacks
« The fields required by particle accelerators are continuously growing

— Stronger e.m. forces — higher stresses/strains —» possible degradation
compromising performances

«  We need a methodology to evaluate the magnet performances under high
stresses
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Coills Degradation

Interf.

Coupling

Bonded
Symmetry B.C.

Interf. Coupling

Currently, we use an empiric limit of 150-200 MPa on the coil equivalent siress

«  We cannof measure directly the strain on the coil

This limit is verified against numerical model results (eventually validated with
indirect measurements)

In these models the coil is considered a block with uniform elastic properties,
measured on cable stacks

H. Felice et al., IEEETAS, 2011
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Strand Degradation

« Significant amount of experimental data exists about the performance of Nb;Sn
wires under axial strain.

« The main parameter governing the degradation in the reversible region is the
strain function s(¢):

The strain dependence of the superconducting properties can be written as @
function of s(e):
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The Exponential Strain Function (1)

* Recently (2013), a new law was proposed to describe the evolution of the strain
function:

1243
Jo+3 _ 1 2

2

s(e) =

«  With I; being the first invariant of the strain tensor and J, the second invariant of
its deviatoric part:

I; = 2(61 + €9 + 83)

Jo = [2(51 —e2)” + (e2 —€3)" + (€3 — 81)2}

S| =

« The strain tensor has to consider the applied load + the pre-compression strain

B. Bordini et al., SuST, 2013
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The Exponential Strain Function (2)
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« In 2014, the scaling law was implemented in a 2D
FE model of a strand, surprisingly matching the
critical current degradation as a function of the
applied pressure (fransversal)

« Does this law apply also to our coils?
«  How can we implement it?

T. Wang et al., Cryogenics, 2014
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Cable Stacks — Transversal Pressure
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«  Measurements on stacks of impregnated cables:

— Very different behaviour in the three phases

— The chord and tangent modulus? vary continuously
during the test

« Probably difficult to condensate the coil elastic
properties in a single number (elastic modulus)

* Non-linear stress-strain relationship TASTM -ET11 - 04

Stress [M Pa
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Cable Stacks — FE Model (1)
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« 2D FE model of a Rutherford cable stack
* Material properties from literature

« Geometry from a mix of image analysis and simple geometric formulas o
match the filling factor, copper-non copper etc.

« Stiffness validated against measurements on impregnated 10 stacks
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Cable Stacks — FE Model (2)
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FRESCA Sample Holder (1)
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« A novel FRESCA sample holder was built and used at CERN. This tool allows to
measure the critical current of stacks of impregnated cables under transversal
pressure.

« First results (2014) show how the reversible degradation on a PIT cable can
change the critical current between 90 and 155 MPa

B. Bordini et al., IEEE TAS, 2014
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FRESCA Sample Holder (2)

Parameter Unit Value - AT Value - B¥
Strand / RRP 108/127 PIT 192
Strand diameter mm 0.85 1.0
i a Number of strands in cable / 40 18
Copper to non-copper / 1.2 1.22
i a Twist Pitch mm 14 63
Cable Bare Width mm 18.15 10
Mid Thickness mm 1.525 1.81
Keystone Angle degrees 0.40 0
T 10-stack cable (MQXF [13]) - E measurements.
v 1 Sample holder cable [3] - Critical current measurements.
’ X

« 2D mechanical and electro-magnetic model of the sample holder

« Cable stack represented with the mechanical approach validated from 10-
stack measurements

— Same methodology but different strand/cable parameters

G. Vallone 02/26/2019 16



Stack Degradation — Results
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Quench currents are matched reasonably well. Notice that:

— On the last loading there was a small irreversible degradation
— The quenches at 90 MPa were at short sample limit. The model correctly

predicts the same strain function at 0 MPa

captured by the model

The upper critical field as computed fitting the critical currents is also well
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Reversible Degradation in Magnets
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« Considerations:

— Strand experiments suggest that the reversible
degradation is a function of the full strain tensor

— Stress/strain relationship is not linear

Furul

25 r 15
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— Strand model seems too complicated to be quickly
applied during the magnet design process

15 1
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— No cable degradation data for complex strain/stress states
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Reversible Degradation in Magnets

Block/Strand Model
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«  We can use the strain law and the validated cable/strand model to check the behavior
under complex loading conditions
* Model assumptions:

— Single strand, modelling strategy is the same used for the cable holder model

— Three cases: vertical/horizontal/shear displacements applied on the boundary

()
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Reversible Degradation in Magnets

Block Model Strain Function:

We can compare the results with the strain
function computed from an hypothetical block
model (e.g. vertical strain)

VEyy 0 0
[el=| 0 &y O
0 0 VEyy

— The strains, however, are not distributed
uniformly in the strand

« Strain tensor used to compute the ‘Block
Strain Function’: [&] = [e] * 30/100

» The coefficient is roughly the ratio
between the avg. strand modulus (~30
GPa), and the Nb,;Sn one (100 GPa)

Block/Strand Model
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o
O

0.85 , -0~ Azimuthal |
o -(O-Radial
7 =7 Shear
0.8“ . ‘ '
0.8 0.85 0.9 0.95 1

Block Strain Function [/]

l

Error seems reasonably small in the
region of interest (irreversible
degradation for higher strains)
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Application to Magnets

1. Compute the cail strains with a block model Block /Strand Model

2. If one strain is prevalent an estimate of the 0.94 |
strain function can be obtained from the
plot on the right

3. Extract the full strain tensor

Strain Function [/]
o
O

- Azimuthal

4. Scale the strain values against a strand 0.86 o Radial
model (results may change with different O-Shear
strand geometries!) 0.84 | : ‘ ‘

-10000  -8000  -6000  -4000  -2000 0
Strain (block) [ue]

5. Compute the strain function with the
exponential scaling law

6. Compute the pinning force / critical current

Note: results are only relevant if the mesh is not

smaller than a single strand
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Application to MQXF
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Case 1 - medium preload (MQXFS4 magnet)
Strain function (ultimate) always higher than 0.94

Interestingly, the minimum of the strain function is
at the pole turn, even if the magnet is completely
unloaded
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Application to MQXF (2)
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«  Crifical current (ultimate)

«  Minimum: 23 kA, at the pole turn
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Conclusion

« Impregnated cable stacks under transversal pressure:
« Stiffness is continuously varying
« Comparison with FE model shows that the copper plasticization may explain
part of this behaviour
« Cable stack degradation model results suggest that:
« The stack degradation may be surprisingly reproduced using a law
developed on axial tests
« We do not need to model the filaments
« A simplified methodology for magnet design purposes was proposed

« The approach was tested against the more refined one

« An application example was performed on a real magnet design
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Stack Degradation - Effective Strain

« The horizontal and vertical strain in the NbsSn
area were amplified with a constant factor a;:
stress ampilification factor to scale the model
to the filament level (strand-to-filament
amplification factor)

« The parameter was calibrated against
measurements and found equal to 1.7:

— About 0.2 may be explained by the 2D
approximation

— The remaining 0.5 is very close to the
amount of non-superconducting material
in the superconducting region (~55% of
the superconducting areaq)

* Magnetic field in the strand was computed as
sum of the background field and the self-field
contribution
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