

Up-down asymmetry in $B \rightarrow K\pi\pi\gamma$ decays

Vishal Bhardwaj¹ & Karim Trabelsi²

¹IISER Mohali , ²LAL Orsay

Strasbourg, April 10, 2019

''let's embrace the future...''

Photon polarisation in $B \rightarrow K \pi \pi \gamma$ decays Workshop

Motivation

Rare $b \rightarrow s\gamma$ FCNC transitions are expected to be sensitive to NP effects. In SM, $b \rightarrow s\gamma$ are forbidden at the tree level.

However they do proceed at loop level, with internal W bosons diagrams.

 γ emitted from $b \rightarrow s\gamma$ transition is predominately left-handed, since the recoiling s quark (which couple to W boson) is left handed. This implies maximal parity violation up to small corrections of the order m_s/m_p .

Measured inclusive $b \rightarrow s\gamma$ rate agrees with the SM calculations. Few SM extensions are also compatible with the current measurments, but predict that the photon acquires a significant right-handed component, due to the exchange of heavy fermion in the electroweak penguin loop. Atwood, Gronau and Soni PRL79,185(1997)

Gronau, Grossman, Pirjol and Ryd PRL88,051802(2002), suggested to measured the up-down asymmetry of the photon direction relative to the $K\pi\pi$ plane in the K resonance rest frame.

 \star LHCb has observed so called up-down asymmetry in the

 $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma PRL \, 112,161801(2014)$

they found a non-zero up-down asymmetry.

- Not enough to provide any quantitative measurement of the photon polarization.
- It has been suggested by Gronau *et al* that one expect larger asymmetry in mode having neutral pion in the final state.

PRD66,054008(2002) PRD 96, 013002 (2017)

Motivation (more information)

Gronau & Prijol identify three types of interferences resulting in non-zero updown asymmetry: *M. Gronau and D. Pirjol, PRD 96, 013002 (2017)*

 \mathcal{A}_{a} : Interferences of amplitudes for two $K^{*}\pi$ intermediate states. Such interferences, involving $K^{*0}\pi^{+}$ and $K^{*+}\pi^{0}$ in $K_{1}^{+} \rightarrow K^{0}\pi^{+}\pi^{0}$ ($K^{*0}\pi^{0}, K^{*+}\pi^{-}$ in $K_{1}^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$). This occurs only in decays involving final neutral π .

 \mathcal{A}_{b} : Interferences of amplitudes for two $K^{*}\pi$ and $K\rho$ amplitudes. Such interferences occurs in all $K_{1} \rightarrow K\pi\pi$ decays including both $K_{1}^{+} \rightarrow K^{+}\pi^{-}\pi^{+}$, $(K_{1}^{0} \rightarrow K^{0}\pi^{-}\pi^{+})$ and $K_{1}^{+} \rightarrow K^{0}\pi^{+}\pi^{0}$ $(K_{1}^{0} \rightarrow K^{+}\pi^{-}\pi^{0})$.

 \mathcal{A}_{c} : Inteferences of S and D wave amplitudes in $K_{1} \rightarrow K^{*}\pi$. This kind of intereferences occurs in all four $K_{1} \rightarrow K\pi\pi$ charged modes.

Large asymmetry is predicted in \mathcal{A}_{a} which only occurs in the modes involving a final neutral pion. Therefore, Belle has potential to contribute and search for up-down asymmetry. Information from modes with K_{s}^{o} and π^{o} will provide crucial information on the photon polarization.

Motivation[M.Gronau and D.Pirjol, arXiv:1704.05280]
Reexamining the photon polarization in $B \rightarrow K \pi \pi \gamma$

We reexamine, update and extend a suggestion we made fifteen years ago for measuring the photon polarization in $b \to s\gamma$ by observing in $B \to K\pi\pi\gamma$ an asymmetry of the photon with respect to the $K\pi\pi$ plane. Asymmetries are calculated for different charged final states due to intermediate $K_1(1400)$ and $K_1(1270)$ resonant states. Three distinct interference mechanisms are identified contributing to asymmetries at different levels for these two kaon resonances. For $K_1(1400)$ decays including a final state π^0 an asymmetry around +30% is calculated, dominated by interference of two intermediate $K^*\pi$ states, while an asymmetry around +10% in decays including final $\pi^+\pi^-$ is dominated by interference of S and D wave $K^*\pi^$ amplitudes. In decays via $K_1(1270)$ to final states including a π^0 a negative asymmetry is favored up to -10% if one assumes S wave dominance in decays to $K^*\pi$ and $K\rho$, while in decays involving $\pi^+\pi^-$ the asymmetry can vary anywhere in the range -13% to +24% depending on unknown phases. For more precise asymmetry predictions in the latter decays we propose studying phases in $K_1 \to K^*\pi, K\rho$ by performing dedicated amplitude analyses of $B \to J/\psi(\psi')K\pi\pi$. In order to increase statistics in studies of $B \to K\pi\pi\gamma$ we suggest using isospin symmetry to combine in the same analysis samples of charged and neutral B decays.

Table 3: Up-down photon asymmetry $\tilde{\mathcal{A}}$ in $B^+ \to K^0 \pi^+ \pi^0 \gamma$ from intermediate $K_1(1400)$. The asymmetry $\tilde{\mathcal{A}}_a$ neglects a contribution of a ρK amplitude as described in the text. For the total asymmetry we use $\alpha_S = 40^\circ$, a value favored by the analysis of [21].

$\delta_{DS}^{(K^*\pi)}(\text{degrees})$	0	45	90	135	180	225	270	315
\mathcal{A}_a	0.30	0.21	0.14	0.14	0.19	0.28	0.34	0.35
$\mathcal{A}_{\mathrm{total}}$	0.30	0.21	0.15	0.14	0.20	0.29	0.35	0.36

We wish to thank Karim Trabelsi for asking very useful questions which motivated this work and Jonathan Rosner for helpful correspondence.

 $S_{ij} = (p_i + p_j)^2$ and $s = (p_1 + p_2 + p_3)^2$ p_1, p_2 and p_3 are four-momenta of π^2 , π^+ and K^+

$$\mathcal{A}_{\rm ud} \equiv \frac{\int_0^1 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} - \int_{-1}^0 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}}{\int_{-1}^1 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}}$$

Fourth-order legendre polynomial is used to fit the distribution

$$f(\cos\hat{\theta}; c_0 = 0.5, c_1, c_2, c_3, c_4) = \sum_{i=0}^4 c_i L_i(\cos\hat{\theta})$$

 L_i is Legendre polynomial of order *i* c_i is corresponding coefficient

 A_{UD} can be expressed as

$$\mathcal{A}_{\rm ud} = c_1 - \frac{c_3}{4}$$

 $\cos(\theta^{c}) = \operatorname{sgn}(s_{13}^{-} - s_{23}^{-}) \cos(\theta)$

Input values from LHCb measurement

Y(4S) B-factory

- 2 B's and nothing else !
- 2 B mesons are created simultaneously in a L=1 coherent state
 - ⇒ before first decay, the final states contains a B and a \overline{B}

Continuum Suppression

- mthro : Magnitude of ROE thrust axis
- mthrs : Magnitude of B thrust axis
- costhr : cosine of angle between thrust axis of *B* and thrust axis of ROE
- **cosbt** : Returns the cosine of angle between thrust axis of *B* and z-axis
- cosb : Theta of B vector in CMS frame
- cc1-cc9 : 9 Cleo cones
- **qr** : Flavor information from Hamlet
- $\Delta Z : Z_{Brec} Z_{btag}$

Use 16+ 1 (LR using 18) variables as input to Neural Network (NeuroBayes)

KSFW LR

Et : Sum of transverse energy of all particles MM2 : Missing mass square Hoo0,1,2,3,4 Hso00,01,02,03,04 [using only charged tracks of other B] Hso10,12,14 [using only photons of other B] Hso20,22,24 [using only missing momentum]

Optimizing the NB cut for continuum suppression

 $B^+ \to K^+ \pi^- \pi^+ \gamma$

 $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

Optimized NB cut > 0.85 FoM : 44.1 Optimized NB cut > 0.85 FoM : 30.6

9

M'_{bc}distribution

Background study: continuum suppression

let's from now on assume that we have a modest sample of 2000 K⁻ $\pi^{+}\pi^{-}\gamma$ and 1500 K⁻ $\pi^{+}\pi^{0}\gamma$ signal evts...

GSIM study for A_{UD} extraction

- Validate A_{UD} extraction method, we performed GSIM study.
- Samples generated using modified version of MINT (from EPFL colleagues) with different models and different A_{UD} input values.
- Four samples tested for $B^0 \rightarrow K^-\pi^+\pi^0\gamma$
- One sample used to test $B^+ \rightarrow K^+\pi^-\pi^+\gamma$
- Boosted the particles into Belle frame, add the other side B decay from separate evtgen generated sample and pass the events through GSIM environment.
- Recover the generated level information.
- Reconstruct the signal .
- Compare the generated and recontructed value for any significant bias.

$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ study

k1

A: 20 K events with LHCb model

Input $A_{UD} = (5.93 \pm 0.72)\%$

We expect around 2500 signal events.

J^P	Amplitude k	a_k	ϕ_{k}	Fraction $(\%)$
1+	$K_1(1270)^+ \to K^*(892)^0 \pi^+$ [S-wave]	1 (fixed)	0 (fixed)	15.3
	$K_1(1270)^+ \to K^*(892)^0 \pi^+$ [D-wave]	1.00	-1.74	0.6
	$K_1(1270)^+ \rightarrow K^+ \rho(770)^0$	2.02	-0.91	37.9
	$K_1(1400)^+ \to K^*(892)^0 \pi^+$	0.59	-0.76	7.4
1-	$K^*(1410)^+ \rightarrow K^*(892)^0 \pi^+$	0.11	0.00	7.9
	$K^*(1680)^+ \rightarrow K^*(892)^0 \pi^+$	0.05	0.44	3.4
	$K^*(1680)^+ \to K^+ \rho(770)^0$	0.04	1.40	2.3
2+	$K_2^*(1430)^+ \rightarrow K^*(892)^0 \pi^+$	0.28	0.00	4.5
2	$K_2^*(1430)^+ \to K^+ \rho(770)^0$	0.47	1.80	8.9
	$K_2(1580)^+ \to K^*(892)^0 \pi^+$	0.49	2.88	4.2
2^{-}	$K_2(1580)^+ \to K^+ \rho(770)^0$	0.38	2.44	3.2
	$K_2(1770)^+ \rightarrow K^*(892)^0 \pi^+$	0.35	0.00	2.8
	$K_2(1770)^+ \rightarrow K^+ \rho(770)^0$	0.08	2.53	0.2
	$K_2(1770)^+ \rightarrow K_2^*(1430)^0 \pi^+$	0.07	-2.06	0.6

Reconstructed $A_{\mu\nu}$ is consistent within one sigma.

$B^+ \to K^+ \pi^- \pi^+ \gamma$

In Bins of M(K $\pi\pi$)

$B^0 \to K^+\pi^-\pi^0 \ \gamma \ study$

3 samples used :

A : 10K events with one Amplitude $B^0 \rightarrow K_1(1270)\gamma, K_1(1270) \rightarrow K^*(892)^+\pi^-, K^*(892)^+ \rightarrow K^+\pi^0$ Input $A_{UD} = (0.56 \pm 1.01)\%$

B: 3K events with three Amplitudes

$$B^{0} \rightarrow K_{1}(1270)\gamma, K_{1}(1270) \rightarrow K^{*}(892)^{+}\pi^{-}, K^{*}(892)^{+} \rightarrow K^{+}\pi^{0}$$

 $B^{0} \rightarrow K_{1}(1270)\gamma, K_{1}(1270) \rightarrow \rho^{-}K^{+}, \rho \rightarrow \pi^{0}\pi^{-}$
 $B^{0} \rightarrow K_{1}(1270)\gamma, K_{1}(1270) \rightarrow K^{*}(892)^{0}\pi^{0}, K^{*}(892)^{0} \rightarrow K^{-}\pi^{+}$
Input $A_{UD} = (13.87 \pm 1.7)\%$

C: 1 Million events with 21 Amplitudes

Input $A_{UD} = (11.4 \pm 0.1)\%$

J^P	Amplitude k	a_k	ϕ_k	Fraction $(\%)$
1+	$K_1(1270)^0 \to K^*(892)^0 \pi^0$ [S-wave]	1(fixed)	0 (fixed)	8.0
	$K_1(1270)^0 \to K^*(892)^+\pi^-$ [S-wave]	1.01	0.00	8.0
	$K_1(1270)^0 \to K^*(892)^+\pi^-$ [D-wave]	0.98	-1.74	0.3
	$K_1(1270)^0 \to K^*(892)^0 \pi^0$ [D-wave]	0.99	-1.74	0.3
	$K_1(1270)^0 \to K^+ \rho(770)^-$	2.86	-0.91	39.7
	$K_1(1400)^0 \to K^*(892)^+\pi^-$	0.60	-0.76	3.8
	$K_1(1400)^0 \to K^*(892)^0 \pi^0$	0.59	-0.76	3.8
1-	$K^*(1410)^0 \rightarrow K^*(892)^+ \pi^-$	0.11	0.00	3.9
	$K^*(1410)^0 \rightarrow K^*(892)^0 \pi^0$	0.11	0.00	3.9
	$K^*(1680)^0 \rightarrow K^*(892)^+\pi^-$	0.05	0.44	1.7
	$K^*(1680)^0 \rightarrow K^*(892)^0 \pi^0$	0.05	0.44	1.7
	$K^*(1680)^0 \to K^+ \rho(770)^-$	0.06	1.40	2.4
2^{+}	$K_2^*(1430)^0 \rightarrow K^*(892)^+ \pi^-$	0.27	0.00	2.3
	$K_2^*(1430)^0 \to K^*(892)^0 \pi^0$	0.27	0.00	2.3
	$K_2^*(1430)^0 \to K^+ \rho(770)^-$	0.63	1.80	8.9
2-	$K_2(1580)^0 \rightarrow K^*(892)^+ \pi^-$	0.49	2.88	2.2
	$K_2(1580)^0 \to K^*(892)^0 \pi^0$	0.49	2.88	2.2
	$K_2(1580)^0 \to K^+ \rho(770)^-$	0.54	2.44	3.2
	$K_2(1770)^0 \rightarrow K^*(892)^+\pi^-$	0.35	0.00	1.5
	$K_2(1770)^0 \to K^*(892)^0 \pi^0$	0.35	0.00	1.5
	$K_2(1770)^0 \to K^+ \rho(770)^-$	0.11	2.53	0.2
	$K_2(1770)^0 \to K_2^*(1430)^+\pi^-$	0.07	-2.06	0.3
	$K_2(1770)^0 \to K_2^*(1430)^0 \pi^0$	0.07	-2.06	0.3

15

 $B^0 \to K^+ \pi^- \pi^0 \gamma$

Extracted A_{UD} from reconstruction

Fit Mbc and get background subtract $cos(\theta)$ *sign(m₁₃-m₂₃) distributon and fit the sPlot distribution to get A_{UD}

Reconstructed A_{up} is consistent within one sigma.

Pull study

Expect around 1500 events

One pseudo-experiment

Extracted A_{UD} : (12.3± 2.5)%

17

45 samples with 1500 signal yield used

Generated A_{UD} in $B \rightarrow K^+\pi^-\pi^0\gamma$

 $\cos(\theta^{c})$

$A_{\mu\nu}$ Bias study in bins of M(K $\pi\pi$)

-0.8

-0.6

-0.4

0.2

0.4

0.6

0.8

 $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

 A_{UD} in Bins of M(K $\pi\pi$)

Toys based on One Million sample

Possible bias from SCF

much larger sample (20 M) allows detailed study Events in signal window:

 \Rightarrow A_{UD} strongly biased for SCF

angular distributions extracted from sPlot: moderate impact from SCF still a bias exists at high $M(K\pi\pi)$ (visible also when using only CR events)

Summary

- * We extract A_{UD} by fitting cos(θ) for different M(K $\pi\pi$) regions.
- * Performed GSIM study in order to validate the up-down asymmetry extraction procedure.
- * Samples generated using modified MINT (from EPFL colleagues) and GSIM samples obtained.
- * Three different samples used for $B \rightarrow K^+\pi^-\pi^0\gamma$ having different A_{UD} value and one sample of $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ decay mode.
- * Able to extract A_{UD} value within one sigma.
- * A_{UD} in M(K $\pi\pi$) bins was extracted.
- * Optimization of the NB cut is done.
- * Used pseudo-experiment to check A_{UD} extraction.
- Performed proper GSIM toy study to validate fitter, A_UD uncertainty is ~5-6% for each M(K $\pi\pi$) bin and look for potential bias.
- Bias of 1-2% at larger M(K $\pi\pi$) values (>1.4 GeV) to be investigated further before finalizing the analysis

Thank you

Dependence of A_{UD} on NB cut

 $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

Reconstruction / Selection criteria

|dr| < 1.0 cm, |dz| < 3.5 cmKid > 0.6 , π id > 0.4 K_s⁰ : 0.4876-0.5176 GeV/c² [nisKsFinder is used] π^{0} : E > 60 MeV and M : [123-147] MeV/c² P_{π^{0}} > 0.33 GeV/c² && cos(θ_{hel})>-0.87 [Optimized cuts] M(K $\pi\pi$) < 1.9 GeV/c² E > 500 MeV, E₉/E₂₅ > 0.85

Signal identification : $\Delta E = E_B^* - E_{beam}^*$ and $M'_{bc} = \sqrt{(E_{beam}^*)^2 - (p_B')^2}$ $p_B'^* = p_{K\pi\pi}^* + \frac{p_{\gamma}^*}{|p_{\gamma}^*|} \times (E_{beam}^* - E_{K\pi\pi}^*)$ Signal region -100 MeV < E < 50 MeV and M'_{bc} > 5.22 GeV/c² BCS is based on χ^2 (vertex fit to charged tracks) + χ^2 (based on ΔE) + $\chi^2(K_S)^*$ + $\chi^2(\pi^0)^*$

Fit M_{bc} ' to get background subtracted $cos(\theta^c)$ distribution and extract A_{UD} from fit to $cos(\theta^c)$.

 $\cos(\theta^{c}) = \cos(\theta) \times \text{Charge of B}$

 * for the decays including $\pi^{\scriptscriptstyle 0}$ and $K_{_{S}}$

28

 $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

20,000 events

$B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

20,000 events

M(K⁻π⁻)

$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

Pull study for $B \to K^+ \pi^- \pi^0 \gamma^{45}$ samples with 1500 signal yield used

 $B^0 \rightarrow K^+\pi^-\pi^0 \ \gamma \ 1 \ \text{Million sample} \\ 1.1 < M(K\pi\pi) < 1.9 \ \text{GeV}$

[1.1, 1.3]

[1.3,1.4]

[1.4, 1.6]

 $A_{\mu\nu}$ extracted pull in different bins

45 toys

[1.6, 1.9]

C_{NB} > 0.85

[1.1, 1.3]

[1.4,1.6]