Up-down asymmetry in $B \rightarrow K \pi \pi y$ decays

Vishal Bhardwaj ${ }^{1}$ \& Karim Trabelsi ${ }^{2}$

${ }^{1}$ IISER Mohali , ${ }^{2}$ LAL Orsay

Strasbourg, April 10, 2019

''let's embrace the future...'
Photon polarisation in $\mathrm{B} \rightarrow \mathrm{K} \pi \pi \gamma$ decays Workshop

Motivation

Rare $b \rightarrow s \gamma$ FCNC transitions are expected to be sensitive to NP effects. In SM, $b \rightarrow s \gamma$ are forbidden at the tree level.

However they do proceed at loop level, with internal W bosons diagrams.
γ emitted from $b \rightarrow s \gamma$ transition is predominately left-handed,
since the recoiling s quark (which couple to W boson) is left handed.
 This implies maximal parity violation up to small corrections of the order m_{s} / m_{b}.

Measured inclusive $b \rightarrow s \gamma$ rate agrees with the SM calculations.
Few SM extensions are also compatible with the current measurments, but predict that the photon acquires a significant right-handed component, due to the exchange of heavy fermion in the electroweak penguin loop. Atwood, Gronau and Soni PRL79,185(1997)

Gronau, Grossman, Pirjol and Ryd PRL88,051802(2002), suggested to measured the up-down asymmetry of the photon direction relative to the $K \pi \pi$ plane in the K resonance rest frame.
\star LHCb has observed so called up-down asymmetry in the $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma$ PRL 112,161801(2014)
they found a non-zero up-down asymmetry.
\square Not enough to provide any quantitative measurement of the photon polarization.
\square It has been suggested by Gronau et al that one expect larger asymmetry in mode having neutral pion in the final state.

PRD66,054008(2002) PRD 96, 013002 (2017)

Motivation (more information)

Gronau \& Prijol identify three types of interferences resulting in non-zero updown asymmetry:
M. Gronau and D. Pirjol, PRD 96, 013002 (2017)
\mathcal{A}_{a} : Interferences of amplitudes for two $K^{\star} \pi$ intermediate states. Such interferences, involving $K^{* 0} \pi^{+}$and $K^{*+} \pi^{0}$ in $K_{1}^{+} \rightarrow K^{0} \pi^{+} \pi^{0}\left(K^{* 0} \pi^{0}, K^{*+} \pi^{-}\right.$in $K_{1}^{0} \rightarrow K^{+} \pi \pi^{0}$). This occurs only in decays involving final neutral π.
\mathcal{A}_{b} : Interferences of amplitudes for two $K^{\star} \pi$ and $K \rho$ amplitudes. Such interferences occurs in all $K_{1} \rightarrow K \pi \pi$ decays including both $K_{1}^{+} \rightarrow K^{+} \pi \pi^{+}$, $\left(K_{1}^{0} \rightarrow K^{0} \pi \pi^{+}\right)$and $K_{1}^{+} \rightarrow K^{0} \pi^{+} \pi^{0}\left(K_{1}^{0} \rightarrow K^{+} \pi \pi^{0}\right)$.
\mathcal{A}_{c} : Inteferences of S and D wave amplitudes in $K_{1} \rightarrow K^{\star} \pi$. This kind of intereferences occurs in all four $K_{1} \rightarrow K \pi \pi$ charged modes.

Large asymmetry is predicted in \mathcal{A}_{a} which only occurs in the modes involving a final neutral pion.
Therefore, Belle has potential to contribute and search for up-down asymmetry. Information from modes with $K_{s}{ }^{0}$ and π^{0} will provide crucial information on the photon polarization.

Motivation

We reexamine, update and extend a suggestion we made fifteen years ago for measuring the photon polarization in $b \rightarrow s \gamma$ by observing in $B \rightarrow K \pi \pi \gamma$ an asymmetry of the photon with respect to the $K \pi \pi$ plane. Asymmetries are calculated for different charged final states due to intermediate $K_{1}(1400)$ and $K_{1}(1270)$ resonant states. Three distinct interference mechanisms are identified contributing to asymmetries at different levels for these two kaon resonances. For $K_{1}(1400)$ decays including a final state π^{0} an asymmetry around $+30 \%$ is calculated, dominated by interference of two intermediate $K^{*} \pi$ states, while an asymmetry around $+10 \%$ in decays including final $\pi^{+} \pi^{-}$is dominated by interference of S and D wave $K^{*} \pi$ amplitudes. In decays via $K_{1}(1270)$ to final states including a π^{0} a negative asymmetry is favored up to -10% if one assumes S wave dominance in decays to $K^{*} \pi$ and $K \rho$, while in decays involving $\pi^{+} \pi^{-}$the asymmetry can vary anywhere in the range -13% to $+24 \%$ depending on unknown phases. For more precise asymmetry predictions in the latter decays we propose studying phases in $K_{1} \rightarrow K^{*} \pi, K \rho$ by performing dedicated amplitude analyses of $B \rightarrow J / \psi\left(\psi^{\prime}\right) K \pi \pi$. In order to increase statistics in studies of $B \rightarrow K \pi \pi \gamma$ we suggest using isospin symmetry to combine in the same analysis samples of charged and neutral B decays.

Table 3: Up-down photon asymmetry $\tilde{\mathcal{A}}$ in $B^{+} \rightarrow K^{0} \pi^{+} \pi^{0} \gamma$ from intermediate $K_{1}(1400)$. The asymmetry $\overline{\mathcal{A}}_{a}$ neglects a contribution of a ρK amplitude as described in the text. For the total asymmetry we use $\alpha_{S}=40^{\circ}$, a value favored by the analysis of [21].

$\delta_{D S}^{(K \times \pi)}$ (degrees)	0	45	90	135	180	225	270	315
\mathcal{A}_{a}	0.30	0.21	0.14	0.14	0.19	0.28	0.34	0.35
$\overline{\mathcal{A}}_{\text {total }}$	0.30	0.21	0.15	0.14	0.20	0.29	0.35	0.36

We wish to thank Karim Trabelsi for asking very useful questions which motivated this

Differential decay rate of $B \rightarrow K \pi \pi y$ can be written as :
Resonances in $K \pi \pi$

Photon Polarization

$$
S_{i j}=\left(p_{i}+p_{j}\right)^{2} \text { and } s=\left(p_{1}+p_{2}+p_{3}\right)^{2} \quad p_{1}, p_{2} \text { and } p_{3} \text { are four-momenta of } \pi, \pi^{+} \text {and } K^{+}
$$

$$
\mathcal{A}_{\mathrm{ud}} \equiv \frac{\int_{0}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{docos} \theta}-\int_{-1}^{0} \mathrm{~d} \cos \theta \theta \frac{\mathrm{~d} \Gamma}{\mathrm{dcos} \theta}}{\int_{-1}^{1} d \cos \theta \frac{\mathrm{~d} \Gamma}{\cos \theta}}
$$

Fourth-order legendre polynomial is used to fit the distribution
[1.1,1.3] GeV/c²

$$
f\left(\cos \hat{\theta} ; c_{0}=0.5, c_{1}, c_{2}, c_{3}, c_{4}\right)=\sum_{i=0}^{4} c_{i} L_{i}(\cos \hat{\theta})
$$

L_{i} is Legendre polynomial of order i c_{i} is corresponding coefficient
$A_{U D}$ can be expressed as

$$
\mathcal{A}_{\mathrm{ud}}=c_{1}-\frac{c_{3}}{4}
$$

$$
\cos \left(\theta^{c}\right)=\operatorname{sgn}\left(\mathrm{s}_{13}-\mathrm{S}_{23}\right) \cos (\theta)
$$

Differential decay rate of $B \rightarrow K \pi \pi y$ can be written as :
Resonances in K $\pi \pi$

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} s \mathrm{~d} s_{13} \mathrm{~d} s_{23} \mathrm{~d} \cos \theta} \propto \sum_{i=0,2,4} a_{i}\left(s, s_{13}, s_{23}\right) \cos ^{i} \theta+\lambda_{2} \lambda_{j, 1,3} \sum_{j=1, \ldots, \ldots}\left(s, s_{13}, s_{23}\right) \cos ^{j} \theta
$$

Photon Polarization

$$
S_{i j}=\left(p_{i}+p_{j}\right)^{2} \text { and } s=\left(p_{1}+p_{2}+p_{3}\right)^{2} \quad p_{1}, p_{2} \text { and } p_{3} \text { are four-momenta of } \pi, \pi^{+} \text {and } K^{+}
$$

$$
\mathcal{A}_{\mathrm{ud}} \equiv \frac{\int_{0}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\cos \theta}-\int_{-1}^{0} \mathrm{~d} \cos \theta \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}}{\int_{-1}^{1} \mathrm{~d} \cos \theta \frac{\mathrm{~d}}{\mathrm{~d} \cos \theta}}
$$

Fourth-order legendre polynomial is used to fit the distribution

$$
f\left(\cos \hat{\theta} ; c_{0}=0.5, c_{1}, c_{2}, c_{3}, c_{4}\right)=\sum_{i=0}^{4} c_{i} L_{i}(\cos \hat{\theta})
$$

L_{i} is Legendre polynomial of order i
c_{i} is corresponding coefficient
$A_{U D}$ can be expressed as

$$
\mathcal{A}_{\mathrm{ud}}=c_{1}-\frac{c_{3}}{4}
$$

$\mathbf{Y}(\mathbf{4 S})$ B-factory

$Y(4 S)$
B_{d}^{0}, B^{+}
-2 B's and nothing else! \bar{B}_{d}^{0}, B^{-}

- 2 B mesons are created simultaneously in a $\mathrm{L}=1$ coherent state
\Rightarrow before first decay, the final states contains a B and a \bar{B}

Continuum Suppression

mthro : Magnitude of ROE thrust axis
mthrs : Magnitude of B thrust axis
costhr : cosine of angle between thrust axis of B and thrust axis of ROE
cosbt : Returns the cosine of angle between thrust axis of B and z-axis
cosb : Theta of B vector in CMS frame
cc1-cc9 : 9 Cleo cones
qr : Flavor information from Hamlet
$\Delta Z \quad: Z_{\text {Brec }}-Z_{\text {btag }}$

Use 16+ 1 (LR using 18) variables as input to Neural Network
(NeuroBayes)

```
                    KSFW LR
Et : Sum of transverse energy of all particles
MM2 : Missing mass square
Hoo0,1,2,3,4
Hso00,01,02,03,04 [using only charged tracks of other B]
Hso10,12,14 [using only photons of other B]
Hso20,22,24 [using only missing momentum]
```


Optimizing the NB cut for continuum suppression

Optimized NB cut > 0.85
FoM : 44.1

Optimized NB cut >0.85
FoM : 30.6

$M_{b c}{ }^{\prime}$ distribution

Background study: continuum suppression

let's from now on assume that we have a modest sample of $2000 \mathrm{~K}^{-} \pi^{+} \pi^{-} \gamma$ and $1500 \mathrm{~K}^{-} \pi^{+} \pi^{0} \gamma$ signal evts ...

GSIM study for $A_{u d}$ extraction

- Validate $A_{U D}$ extraction method, we performed GSIM study.
- Samples generated using modified version of MINT (from EPFL colleagues) with different models and different $A_{u D}$ input values.
- Four samples tested for $\mathrm{B}^{0} \rightarrow \mathrm{~K} \cdot \pi^{+} \pi^{0} \mathrm{Y}$
- One sample used to test $B^{+} \rightarrow K^{+} \pi-\pi^{+} \gamma$
- Boosted the particles into Belle frame, add the other side B decay from separate evtgen generated sample and pass the events through GSIM environment.
- Recover the generated level information.
- Reconstruct the signal .
- Compare the generated and recontructed value for any significant bias.

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi \pi^{+} \mathrm{y}$ study

A : 20 K events with LHCb model

$$
\text { Input } A_{U D}=(5.93 \pm 0.72) \%
$$

We expect around 2500 signal events.

J^{P}	Amplitude k	a_{k}	ϕ_{k}	Fraction (\%)
1^{+}	$K_{1}(1270)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}[$S-wave $]$	1 (fixed)	0 (fixed)	15.3
	$K_{1}(1270)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}[$[D-wave $]$	1.00	-1.74	0.6
	$K_{1}(1270)^{+} \rightarrow K^{+} \rho(770)^{0}$	2.02	-0.91	37.9
	$K_{1}(1400)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.59	-0.76	7.4
1^{-}	$K^{*}(1410)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.11	0.00	7.9
	$K^{*}(1680)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.05	0.44	3.4
	$K^{*}(1680)^{+} \rightarrow K^{+} \rho(770)^{0}$	0.04	1.40	2.3
2^{+}	$K_{2}^{*}(1430)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.28	0.00	4.5
	$K_{2}^{*}(1430)^{+} \rightarrow K^{+} \rho(770)^{0}$	0.47	1.80	8.9
$K_{2}(1580)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.49	2.88	4.2	
	$K_{2}(1580)^{+} \rightarrow K^{+} \rho(770)^{0}$	$K_{2}(1770)^{+} \rightarrow K^{*}(892)^{0} \pi^{+}$	0.38	2.44
	$K_{2}(1770)^{+} \rightarrow K^{+} \rho(770)^{0}$	0.35	0.00	3.2
	$K_{2}(1770)^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}$	0.08	2.53	0.8
		0.07	-2.06	0.2

Extracted $A_{U D}=(7.7 \pm 1.7) \%$

Reconstructed $A_{U D}$ is consistent within one sigma.

In Bins of $\mathrm{M}(\mathrm{K} \pi \pi)$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi \pi^{0} \mathrm{y}$ study

3 samples used :

A : 10K events with one Amplitude

$$
\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1270) \mathrm{y}, \mathrm{~K}_{1}(1270) \rightarrow \mathrm{K}^{*}(892)^{+} \pi^{-}, \mathrm{K}^{*}(892)^{+} \rightarrow \mathrm{K}^{+} \pi^{0}
$$

$$
\text { Input } A_{U D}=(0.56 \pm 1.01) \%
$$

B : 3K events with three Amplitudes

$$
\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1270) \mathrm{y}, \mathrm{~K}_{1}(1270) \rightarrow \mathrm{K}^{*}(892)^{+} \pi^{-}, \mathrm{K}^{*}(892)^{+} \rightarrow \mathrm{K}^{+} \pi^{0}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1270) y, \mathrm{~K}_{1}(1270) \rightarrow \rho^{-} \mathrm{K}^{+}, \rho-\rightarrow \pi^{0} \pi^{-}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{~K}_{1}(1270) \mathrm{y}, \mathrm{~K}_{1}(1270) \rightarrow \mathrm{K}^{*}(892)^{0} \pi^{0}, \mathrm{~K}^{\star}(892)^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}
$$

Input $A_{U D}=(13.87 \pm 1.7) \%$
C : 1 Million events with 21 Amplitudes

$$
\text { Input } A_{U D}=(11.4 \pm 0.1) \%
$$

J^{P}	Amplitude k	a_{k}	ϕ_{k}	Fraction (\%)
1^{+}	$K_{1}(1270)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$ [S-wave]	1(fixed)	0 (fixed)	8.0
	$K_{1}(1270)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$[S-wave]	1.01	0.00	8.0
	$K_{1}(1270)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$[D-wave]	0.98	-1.74	0.3
	$K_{1}(1270)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$ [D-wave]	0.99	-1.74	0.3
	$K_{1}(1270)^{0} \rightarrow K^{+} \rho(770)^{-}$	2.86	-0.91	39.7
	$K_{1}(1400)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.60	-0.76	3.8
	$K_{1}(1400)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.59	-0.76	3.8
1^{-}	$K^{*}(1410)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.11	0.00	3.9
	$K^{*}(1410)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.11	0.00	3.9
	$K^{*}(1680)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.05	0.44	1.7
	$K^{*}(1680)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.05	0.44	1.7
	$K^{*}(1680)^{0} \rightarrow K^{+} \rho(770)^{-}$	0.06	1.40	2.4
2^{+}	$K_{2}^{*}(1430)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.27	0.00	2.3
	$K_{2}^{*}(1430)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.27	0.00	2.3
	$K_{2}^{*}(1430)^{0} \rightarrow K^{+} \rho(770)^{-}$	0.63	1.80	8.9
2^{-}	$K_{2}(1580)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.49	2.88	2.2
	$K_{2}(1580)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.49	2.88	2.2
	$K_{2}(1580)^{0} \rightarrow K^{+} \rho(770)^{-}$	0.54	2.44	3.2
	$K_{2}(1770)^{0} \rightarrow K^{*}(892)^{+} \pi^{-}$	0.35	0.00	1.5
	$K_{2}(1770)^{0} \rightarrow K^{*}(892)^{0} \pi^{0}$	0.35	0.00	1.5
	$K_{2}(1770)^{0} \rightarrow K^{+} \rho(770)^{-}$	0.11	2.53	0.2
	$K_{2}(1770)^{0} \rightarrow K_{2}^{*}(1430)^{+} \pi^{-}$	0.07	-2.06	0.3
	$K_{2}(1770)^{0} \rightarrow K_{2}^{*}(1430)^{0} \pi^{0}$	0.07	-2.06	0.3

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi \pi^{0} \mathrm{Y}$
 Extracted $A_{U D}$ from reconstruction

Fit Mbc and get background subtract $\cos (\theta) \star \operatorname{sign}\left(m_{13}-m_{23}\right)$ distributon and fit the sPlot distribution to get $A_{U D}$

Sample A

$$
\text { Input } A_{U D}=(0.6 \pm 1.0) \%
$$

Sample size is 1 K
Extracted $A_{U D}=(5.5 \pm 3.8) \%$

Sample B

$$
A_{U D}=(13.9 \pm 1.7) \%
$$

Sample size is 3 K

$$
A_{U D}=(18.4 \pm 7.6) \%
$$

Sample C

$$
A_{U D}=(11.4 \pm 0.1) \%
$$

Sample size is 1 Million

$$
A_{U D}=(12.3 \pm 0.4) \%
$$

Reconstructed $A_{U D}$ is consistent within one sigma.
$B^{0} \rightarrow \mathrm{~K}^{+} \pi \pi^{0} \mathrm{Y} \quad$ Pull study
Input : (11.5 $\pm 0.1) \%$

One pseudo-experiment

Error on extracted $A_{U D}$

Pull distribution

Extracted $A_{U D}:(12.3 \pm 2.5) \%$

Generated $A_{U D}$ in $B \rightarrow \mathrm{~K}^{+} \pi \pi^{0} y$

$A_{u D}$ Bias study in bins of $\mathrm{M}(\mathrm{K} \pi \pi)$
[1.1,1.3 GeV] Input:(19.4 ± 0.2) \%

[1.4,1.6 GeV] Input: (6.7 ± 0.2) \%

[1.3,1.4 GeV] Input: (11.7 ± 0.2)\%

[1.6,1.9 GeV] Input : (5.1 ± 0.2) \%

45 samples with 1500 signal yield used
$A_{U D}$ for $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi \pi^{0} \mathrm{~V}$
Input estimated from the generated level based on $\mathrm{M}(\mathrm{K} \pi \pi)$

$A_{U D}$ estimated from 45 toys mean Uncertainty estimated from 45 toys error

Mentioned $A_{U D}$ is Weighted Average

Possible bias from SCF

much larger sample (20 M) allows detailed study

SCF is sizeable for some $M(K \pi \pi)$ bins: reach 30% of signal (in M_{bc} signal window) $\mathrm{K} \pi \pi^{0}$ system is not much constraint easy to substitute one of the γ 's

Possible bias from SCF

much larger sample (20 M) allows detailed study
Events in signal window :

at least one final state particle not signal

angular distributions extracted from sPlot: moderate impact from SCF still a bias exists at high $\mathrm{M}(\mathrm{K} \pi \pi)$ (visible also when using only CR events)

Summary

* We extract $A_{U D}$ by fitting $\cos (\theta)$ for different $\mathrm{M}(\mathrm{K} \pi \pi)$ regions.
* Performed GSIM study in order to validate the up-down asymmetry extraction procedure.
* Samples generated using modified MINT (from EPFL colleagues) and GSIM samples obtained.
* Three different samples used for $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{0} \mathrm{y}$ having different $A_{u D}$ value and one sample of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+} y$ decay mode.
${ }_{\star}$ Able to extract $A_{U D}$ value within one sigma.
${ }_{\star} A_{U D}$ in $\mathrm{M}(\mathrm{K} \pi \pi)$ bins was extracted.
* Optimization of the NB cut is done.
* Used pseudo-experiment to check $A_{U D}$ extraction.
- Performed proper GSIM toy study to validate fitter, A_UD uncertainty is $\sim 5-6 \%$ for each $\mathrm{M}(\mathrm{K} \pi \pi)$ bin and look for potential bias.
- Bias of 1-2\% at larger $\mathrm{M}(\mathrm{K} \pi \pi)$ values $(>1.4 \mathrm{GeV})$ to be investigated further before finalizing the analysis

Thank you

Dependence of $A_{u D}$ on NB cut


```
|dr|<1.0 cm, |dz|<3.5 cm
Kid >0.6, rid > 0.4
K}\mp@subsup{}{\textrm{s}}{0}:0.4876-0.5176 GeV/\mp@subsup{c}{}{2} [ nisKsFinder is used]
\pi
P}\mp@subsup{\textrm{m}}{00}{}>0.33\textrm{GeV}/\mp@subsup{\textrm{c}}{}{2}&&\operatorname{cos}(\mp@subsup{0}{\mathrm{ he) }}{})>-0.87\mathrm{ [Optimized cuts]
M(K\pi\pi) < 1.9 GeV/c}\mp@subsup{}{}{2
E>500 MeV, E E/E E 25
```

Signal identification : $\Delta \mathrm{E}=\mathrm{E}_{\mathrm{B}}^{*}-\mathrm{E}_{\text {beam }}^{*}$ and $\mathrm{M}_{\mathrm{bc}}^{\prime}=V^{*}\left(\mathrm{E}^{*}{ }_{\text {beam }}\right)^{2}-\left(\mathrm{p}^{\prime *}{ }_{\mathrm{B}}\right)^{2}$

$$
p_{B}^{\prime *}=p_{K \pi \pi}^{*}+\frac{p_{\gamma}^{*}}{\left|p_{\gamma}^{*}\right|} \times\left(E_{\text {beam }}^{*}-E_{K \pi \pi}^{*}\right)
$$

Signal region
$-100 \mathrm{MeV}<\mathrm{E}<50 \mathrm{MeV}$ and $\mathrm{M}_{\mathrm{bc}}>5.22 \mathrm{GeV} / \mathrm{c}^{2}$
BCS is based on
X^{2} (vertex fit to charged tracks) $+X^{2}$ (based on $\left.\Delta \mathrm{E}\right)+X^{2}\left(\mathrm{~K}_{\mathrm{s}}\right)^{*}+X^{2}\left(\pi^{0}\right)^{*}$
Fit $M_{b c}$ ' to get background subtracted $\cos \left(\theta^{c}\right)$ distribution and extract $A_{U D}$ from fit to $\cos \left(\theta^{c}\right)$.
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0} \mathrm{~V}$
20,000 events

$M\left(\mathrm{~K}^{+} \pi \pi^{+}\right)$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi-\pi^{+} \mathrm{Y}$

45 samples with 1500 signal yield used
Pull study for $B \rightarrow \mathrm{~K}^{+} \pi \pi^{0}{ }^{4}$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+} \mathrm{y}$
 Dependence of $A_{u D}$ on NB cut

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ y 1 Million sample
$1.1<\mathrm{M}(\mathrm{K} \pi \pi)<1.9 \mathrm{GeV}$

$A_{U D}$ extracted in different bins
45 toys

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ y 1 Million sample

$$
C_{N B}>0
$$

Input:0.194 ± 0.002

Input: 0.117 ± 0.002

Input:0.067 ± 0.002
mean $=0.0725 \pm 0.0072$ sigma1 $=0.0486 \pm 0.005$

Input : 0.051 ± 0.002

[1.6,1.9]
$A_{U D}$ extracted pull in different bins

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi \pi^{0}$ У 1 Million sample $\quad \mathrm{C}_{\mathrm{NB}}>0$

$$
C_{N B}>0.85
$$

[1.1,1.3]
[1.3,1.4]
[1.4,1.6]
[1.6,1.9]

