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SM Chapter is being closed

• SM has been tested at quantum level

• EWPT favors light Higgs boson

• CKM paradigm is working very well so far

• LHC found a SM-Higgs like boson around 
125 GeV

• No smoking gun for new physics at LHC so far
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Overall features of EWPT

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02766
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01640
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1479
RbRb 0.21629 ± 0.00066 0.21585
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1037
AfbA0,c 0.0707 ± 0.0035 0.0741
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1479
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.392 ± 0.029 80.371
ΓW [GeV]ΓW [GeV] 2.147 ± 0.060 2.091
mt [GeV]mt [GeV] 171.4 ± 2.1 171.7

Beyond Standard Model – p. 44/??

Almost Perfect !

EWPT & CKM
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The New Minimal Standard Model

Hooman Davoudiasl, Ryuichiro Kitano, Tianjun Li, and Hitoshi Murayama∗
School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

(Dated: May 11, 2004)

We construct the New Minimal Standard Model that incorporates the new discoveries of physics beyond
the Minimal Standard Model (MSM): Dark Energy, non-baryonic Dark Matter, neutrino masses, as well as
baryon asymmetry and cosmic inflation, adopting the principle of minimal particle content and the most general
renormalizable Lagrangian. We base the model purely on empirical facts rather than aesthetics. We need only
six new degrees of freedom beyond the MSM. It is free from excessive flavor-changing effects, CP violation,
too-rapid proton decay, problems with electroweak precision data, and unwanted cosmological relics. Any
model of physics beyond the MSM should be measured against the phenomenological success of this model.

The last several years have brought us revolutionary new
insights into fundamental physics: the discovery of Dark En-
ergy, neutrino masses and bi-large mixings, a solid case for
non-baryonic Dark Matter, and mounting evidence for cosmic
inflation. It is now clear that the age-tested Minimal Standard
Model (MSM) is incomplete and needs to be expanded.

There exist many possible directions to go beyond the
MSM: supersymmetry, extra dimensions, extra gauge symme-
tries (e.g., grand unification), etc. They are motivated to solve
aesthetic and theoretical problems of the MSM, but not nec-
essarily to address empirical problems. It is embarrassing that
all currently proposed frameworks have some phenomenolog-
ical problems, e.g., excessive flavor-changing effects, CP vio-
lation, too-rapid proton decay, disagreement with electroweak
precision data, and unwanted cosmological relics.

In this letter, we advocate a different and conservative ap-
proach to physics beyond the MSM. We include the minimal
number of new degrees of freedom to accommodate convinc-
ing (e.g., > 5σ) evidence for physics beyond the MSM. We do
not pay attention to aesthetic problems, such as fine-tuning,
the hierarchy problem, etc. We stick to the principle of min-
imality seriously to write down the Lagrangian that explains
everything we know. We call such a model the New Minimal
Standard Model (NMSM). In fact, the MSM itself had been
constructed in this spirit, and it is a useful exercise to follow
through with the same logic at the advent of the major dis-
coveries we have witnessed. Of course, we require it to be a
consistent Lorentz-invariant renormalizable four-dimensional
quantum field theory, the way the MSM was constructed.

We should not forget that the MSM is a tremendous success
of the twentieth century physics. It is a gauge theory based
on the SU(3)C × SU(2)L × U(1)Y gauge group, has three
generations of quarks and leptons, one doublet Higgs boson,
and a completely general renormalizable Lagrangian one can
write down. We also add classical gravity for completeness.
The Lagrangian can be written down in a few lines (we omit
the metric factor

√
−g):

LMSM = −
1

2g2
s

TrGµνGµν −
1

2g2
TrWµνWµν

−
1

4g′2
BµνBµν + i

θ

16π2
TrGµνG̃µν + M2

PlR

+|DµH |2 + Q̄iiD̸Qi + ŪiiD̸Ui + D̄iiD̸Di

+L̄iiD̸Li + ĒiiD̸Ei −
λ

2

(

H†H −
v2

2

)2

−
(

hij
u QiUjH̃ + hij

d QiDjH + hij
l LiEjH + c.c.

)

.(1)

Here, MPl = 2.4× 1018 GeV is the reduced Planck constant,
H̃ = iσ2H∗, and i, j = 1, 2, 3 are generation indices. It
is quite remarkable that the nineteen physically independent
parameters in these few lines explain nearly all phenomena
we have observed in our universe.

Using the principle of minimal particle content, we attempt
to construct the NMSM. It is supposed to be the complete the-
ory up to the Planck scale unless experiments guide us oth-
erwise. What is such a theory? We claim we need only four
new particles beyond the MSM to construct the NMSM, two
Majorana spinors and two real scalars, or six degrees of free-
dom. Note that all components we add to the MSM had been
used elsewhere in the literature. What is new in our model is
that (1) it is inclusive, namely it covers all the recent impor-
tant discoveries listed below, and (2) it is consistent, namely
that different pieces do not conflict with each other or with the
empirical constraints. Even though the latter may not appear
an important point, it is worth recalling that incorporating two
attractive ideas often leads to tensions and/or conflict, e.g.,
supersymmetry and electroweak baryogenesis because of the
constraints from the electric dipole moments, axion dark mat-
ter and string theory because of the cosmological overabun-
dance, leptogenesis and supersymmetry because of the grav-
itino problem, etc. We find it remarkable and encouraging that
none of the elements we add to the MSM cause tensions nor
conflicts which we will verify explicitly in the letter.

What physics do we need to incorporate into the NMSM
that is lacking in the MSM? Here is the list:
• Dark Matter has been suggested as a necessary ingredient
of cosmology for various reasons. There is now compelling
evidence for a non-baryonic matter component [1].
• Dark Energy is needed based on the concordance of data
from cosmic microwave anisotropy [1], galaxy clusters (see,
e.g., [2]), and high-redshift Type-IA supernovae [3, 4].
• Atmospheric [5] and solar neutrino oscillations [6] have
been established, with additional support from reactor anti-
neutrinos [7], demonstrating neutrino masses and mixings.
• The cosmic baryon asymmetry η = nB/s = 9.2+0.6

−0.4 ×
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imality seriously to write down the Lagrangian that explains
everything we know. We call such a model the New Minimal
Standard Model (NMSM). In fact, the MSM itself had been
constructed in this spirit, and it is a useful exercise to follow
through with the same logic at the advent of the major dis-
coveries we have witnessed. Of course, we require it to be a
consistent Lorentz-invariant renormalizable four-dimensional
quantum field theory, the way the MSM was constructed.

We should not forget that the MSM is a tremendous success
of the twentieth century physics. It is a gauge theory based
on the SU(3)C × SU(2)L × U(1)Y gauge group, has three
generations of quarks and leptons, one doublet Higgs boson,
and a completely general renormalizable Lagrangian one can
write down. We also add classical gravity for completeness.
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+L̄iiD̸Li + ĒiiD̸Ei −
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Here, MPl = 2.4× 1018 GeV is the reduced Planck constant,
H̃ = iσ2H∗, and i, j = 1, 2, 3 are generation indices. It
is quite remarkable that the nineteen physically independent
parameters in these few lines explain nearly all phenomena
we have observed in our universe.

Using the principle of minimal particle content, we attempt
to construct the NMSM. It is supposed to be the complete the-
ory up to the Planck scale unless experiments guide us oth-
erwise. What is such a theory? We claim we need only four
new particles beyond the MSM to construct the NMSM, two
Majorana spinors and two real scalars, or six degrees of free-
dom. Note that all components we add to the MSM had been
used elsewhere in the literature. What is new in our model is
that (1) it is inclusive, namely it covers all the recent impor-
tant discoveries listed below, and (2) it is consistent, namely
that different pieces do not conflict with each other or with the
empirical constraints. Even though the latter may not appear
an important point, it is worth recalling that incorporating two
attractive ideas often leads to tensions and/or conflict, e.g.,
supersymmetry and electroweak baryogenesis because of the
constraints from the electric dipole moments, axion dark mat-
ter and string theory because of the cosmological overabun-
dance, leptogenesis and supersymmetry because of the grav-
itino problem, etc. We find it remarkable and encouraging that
none of the elements we add to the MSM cause tensions nor
conflicts which we will verify explicitly in the letter.

What physics do we need to incorporate into the NMSM
that is lacking in the MSM? Here is the list:
• Dark Matter has been suggested as a necessary ingredient
of cosmology for various reasons. There is now compelling
evidence for a non-baryonic matter component [1].
• Dark Energy is needed based on the concordance of data
from cosmic microwave anisotropy [1], galaxy clusters (see,
e.g., [2]), and high-redshift Type-IA supernovae [3, 4].
• Atmospheric [5] and solar neutrino oscillations [6] have
been established, with additional support from reactor anti-
neutrinos [7], demonstrating neutrino masses and mixings.
• The cosmic baryon asymmetry η = nB/s = 9.2+0.6
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SM Lagrangian

Based on local gauge principle



• Only Higgs (~SM) and Nothing 
Else So Far at the LHC 

• Nature is described by Local 
Gauge Theories 

• All the observed particles 
carry some gauge charges (no 
gauge singlets observed so far)



Motivations for BSM

• Neutrino masses and mixings

• Baryogenesis

• Inflation (inflaton)

• Nonbaryonic DM

• Origin of EWSB and Cosmological Const ?

Leptogenesis

Starobinsky & Higgs Inflations

Many candidates

Can we attack these problems ?

?



Maybe it is right time to 
think about what LHC and 
Planck data tell us about 
New Physics@EW scale



Origin of EWSB ?

• LHC discovered a scalar ~ SM Higgs boson

• This answers the origin of EWSB within the 
SM in terms of the Higgs VEV, v

• Still we can ask the origin of the scale “v”

• Can we understand its origin by some 
strong dynamics similar to QCD or TC ? 



Origin of Mass

• Massive SM particles get their masses from 
Higgs mechanism or confinement in QCD

• How about DM particles ?  Where do their 
masses come from ?  

• SM Higgs ? SUSY Breaking ? Extra Dim ?

• Can we generate all the masses as in 
proton mass from dim transmutation in 
QCD ?  (proton mass in massless QCD)



Questions about DM
• Electric Charge/Color neutral 

• How many DM species are there ?

• Their masses and spins ?

• Are they absolutely stable or very long lived ?

• How do they interact with themselves and with 
the SM particles ?

• Where do their masses come from ? Another 
(Dark) Higgs mechanism ? Dynamical SB ?

• How to observe them ?



• Most studies on DM were driven by some 
anomalies: 511 keV gamma ray, PAMELA/
AMS02 positron excess, DAMA/CoGeNT, 
Fermi/LAT 135 GeV gamma ray, 3.5 keV 
Xray, Gamma ray excess from GC etc

• On the other hand, not so much attention 
given to DM stability/longevity in nonSUSY 
DM models

• Important to implement this properly in 
QFT which is supposed to a framework to 
describe DM properties (including its 
interactions)



• Also,  often extra particles (the so-called 
mediators, scalar, vector etc) are introduced 
to solve three puzzles in CDM paradigm in 
terms of DM self-interaction

• DR and its interaction with DM may help to 
relax the tension between H0 and σ8

• Phenomenologically nice, but theoretically 
rather ad hoc 

• Any good organizing principle ? 



• Note that extra particles (the so-called 
mediators, scalar, vector etc) are introduced 
to solve three puzzles in CDM paradigm in 
terms of DM self-interaction

• DR and its interaction with DM may help to 
relax the tension between H0 and σ8

• Phenomenologically nice, but theoretically 
rather ad hoc 

• Any good organizing principle ? 

• YES ! >> Dark Gauge Symmetry



Local Dark Gauge Sym

• Well tested principle in the SM

• Completely fix the dynamics of DM, SM

• Guarantees stability/longevity of DM

• Force mediators already present in a gauge 
invariant way (Only issue is the mass scales)

• Predictable amount of dark radiation 

NB: The first 3 points are also true in the minimal DM scenarios  
(No new gauge sym, just SM gauge symmetries)



SM vs. DM Physics
• Success of the Standard Model 

of Particle Physics lies in “local 
gauge symmetry” without 
imposing any internal global 
symmetries 


• Electron stability : U(1)em gauge 
invariance, electric charge 
conservation


• Proton longevity : baryon # is an 
accidental sym of the SM


• No gauge singlets in the SM ; all 
the SM fermions chiral

• Dark sector with (excited) dark 
matter, dark radiation and 
force mediators might have 
the same structure as the SM


• “Dark gauge theories without 
any ad hoc global sym”


• Origin of DM stability/
longevity from dark gauge 
sym, and not from dark global 
symmetries, as in the SM


• Just like the SM (conservative)



Basic assumptions

• DM, DR, Mediators : particles that can be 
described by conventional QFT

• DM stability/longevity is due to unbroken 
dark gauge symmetry/accidental symmetry 
of dark gauge theory (similarly to the SM: 
electron stability / proton longevity)

• Very conservative approach to DM models



Singlet Portal

• If there is a hidden sector and DM is 
thermal, then we need a portal to it 

• There are only three unique gauge singlets 
in the SM + RH neutrinos

H
†
H, Bµ⌫ , NRSM Sector Hidden Sector

NR $ eHlL

Baek, Ko, Park,  arXiv:1303.4280, JHEP

e.g. �†X�X , Xµ⌫ , 
†
X�X



Why Dark Gauge Symmetry ?

• Is DM absolutely stable or very long lived ?

• If DM is absolutely stable, one can assume it carries 
a new conserved dark charge, associated with 
unbroken dark gauge sym

• DM can be long lived (lower bound on DM lifetime 
is much weaker than that on proton lifetime) if dark 
sym is spontaneously broken

Higgs can be harmful to weak scale DM stability



• Very popular alternative to SUSY LSP

• Simplest in terms of the # of new dof’s

• But, where does this Z2 symmetry come from ?

• Is it Global or Local ?

Z2 sym Scalar DM

3

not consider dim-3 operators, XRH†H or XIH†H, as-
suming the global dark symmetry GX is broken only by

nonrenormalizable operators.
Then the lifetime of XR or XI decaying into a pair or

photons would be

�(XR(or XI) ! ��) ⇠ 1

4⇡

✓
e2

MPl

◆2

m3
X

⇠ 10�38

✓
mX(GeV)

100

◆3

GeV (3)

This decay rate should be smaller than 10�52GeV, which
is possible only if mX . O(10) keV. If these nonrenor-
malizable operators are induced at lower energy scale
⇤ < MPl, then the DM mass should be lighter than the
above estimate, scaled by (⇤/MPl)2/3. Axion or light di-
lation DM is a good example of this. If these operators
were allowed with O(MPlanck), it would be disastrous for
dark matter physics.

The above argument also applies to global Z2 symme-
try which is invoked very often to stabilize the scalar dark
matter S with the following renormalizable lagrangian :

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

The Planck scale suppressed dim-5 operators will make
the weak scale dark matter S decay very fast in this
model too. Namely global Z2 discrete symmetry is not
strong enough to guarantee the stability or longevity of
the scalar dark matter. This is also true for the case of
fermion dark matter, as described in the following sec-
tion.

Local dark gauge symmetry

If dark symmetry U(1)X is unbroken, then the scalar
dark mater will be absolutely stable and there will be a
long range dark force between dark matters. The mass-
less dark photon can contribute to the extra dark radia-
tion at the level of ⇠ 0.06, making slight increase of the

SM prediction for�Ne↵ towards the WMAP9 data. This
issue has been addressed in detail in our recent paper [2],
and we don’t describe it here in any more detail.

If dark symmetry U(1)X is a local symmetry that is
broken spontaneously by h�Xi = v� 6= 0, then the e↵ect
would be similar to the global symmetry breaking with
suitable changes of couplings. The dim-5 operators which
were dangerous in case of global dark symmetry are now
replaced by dim-6 operators since the global dark sym-
metry is implemented to local dark symmetry :

L =
1

M2
Pl

�†
X
XO(4)

SM. (4)

After �X develops nonzero VEV, this operator predicts
that the CDM lifetime is long enough to be safe from
cosmological constraints: However there appears a dim-4
operator which is a disaster for the DM longevity:

L = �XH2�†
X
XH†H +H.c. (5)

After the U(1)X and EWSB, this operator induces a
nonzero VEV for X as well as X ! hh so that X can no
longer be a good CDM candidate.

In order to forbid the above dangerous dim-4 operator,
one has to assign di↵erent U(1)X charges to X and �X :
QX(X) = 1, QX(�X) = 2, for example. Then the model
would possess discrete local Z2 symmetry after U(1)X
breaking, and the lightest U(1)X -charged particle would
be absolutely stable due to the local Z2 symmetry.

L = LSM � 1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫ +Dµ�
†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�† +H.c.

�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (6)

Due to the µ term, the mass degeneracy between XR and
XI is lifted, and also there could be CP violation from
the µ phase. The model is not so simple compared with
the usual Z2 scalar CDM model:

L =
1

2
@µS@

µS � 1

2
m2

S
S2 � �S

4!
S4 � �SH

2
S2H†H.

Dark matter phenomenology in the model (6) is very rich
and beyond the scope of this letter [1]. On the other
hand, Higgs phenomenology is very simple. There will be
two neutral Higgs-like scalar bosons, the signal strengths
of which are less than 1 independent of decay channels.



Fate of CDM with Z2 sym

• Global Z2 cannot save DM from decay with long 
enough lifetime

Consider Z2 breaking operators such as

1

MPlanck
SOSM

The lifetime of the Z2 symmetric scalar CDM S is roughly given by

�(S) ⇠ mS

M2
Planck

⇠ (
mS

100GeV
)10�37

GeV

The lifetime is too short for ~100 GeV DM

keeping dim-4 SM 
operators only

33



Fate of CDM with Z2 sym

• Spontaneously broken local U(1)X can do the job to 
some extent, but there is still a problem

Let us assume a local U(1)X is spontaneously broken by h�Xi 6= 0 with

QX(�X) = QX(X) = 1

Then, there are two types of dangerous operators:

�†
XXH†H, and �†

XXO(dim�4)
SM

Problematic ! Perfectly fine !



• These arguments will apply to all the CDM 
models based on ad hoc Z2 symmetry

• One way out is to implement Z2 symmetry as 
local U(1) symmetry (arXiv:1407.6588 with 
Seungwon Baek and Wan-Il Park);

• See a paper by Ko and Tang on local Z3 scalar 
DM, and another by Ko, Omura and Yu on inert 
2HDM with local U(1)_H

• Talk by T. Matsui on Z2 fermion DM (Tue)



Scalar dark matter stabilized by local Z2 symmetry
and the INTEGRAL 511 keV � ray

P. Ko
⇤

and Wan-Il Park
†

School of Physics, KIAS, Seoul 130-722, Korea
(Dated: February 13, 2013)

We construct a scalar dark matter model where local Z2 symmetry guarantees the stability of
scalar dark matter. When we include the local U(1)X symmetry as the origin of the local Z2

symmetry, the dark matter appears from a complex scalar which has two real fields. After the
U(1)X ! Z2 symmetry breaking, the mass degeneracy between ..................

INTRODUCTION

If Z2 symmetry were global symmetry, it would be bro-

ken by quantum gravity e↵ects which can be described

by MPlanck scale suppressed nonrenormalizable operators

such as

1

MPlanck

�
SFµ⌫F

µ⌫ , S(H†H)
2, ..

�
(1)

MODEL

Let us assume the dark sector has a local U(1)X gauge

which is spontaneously broken into local Z2 symmetry.

This can be achieved with two complex scalar fields �X

and X ⌘ XR + iXI in the dark sector with the U(1)X

charges equal to 2 and 1, respectively, in the following

lagrangian:

QX(�) = 2, QX(X) = 1

L = LSM +�1

4
Xµ⌫X

µ⌫ � 1

2
✏Xµ⌫B

µ⌫
+Dµ�

†
X
Dµ�X � �X

4

⇣
�†
X
�X � v2

�

⌘2
+DµX

†DµX �m2
X
X†X

� �X

4

�
X†X

�2 �
�
µX2�†

+H.c.
�
� �XH

4
X†XH†H � ��XH

4
�†
X
�XH†H � �XH

4
X†X�†

X
�X (2)

After the U(1)X symmetry breaking by nonzero h�Xi =
v� 6= 0, the µ�term generates

(X2
+H.c.) = 2(X2

R
�X2

I
)

which lifts the mass degeneracy between XR and XI .

The lagrangian is invariant under X ! �X even after

U(1)X symmetry breaking.

The covariant derivative on X is defined as

DµX = @µX � igXXµX.

In terms of XI and XR, one has

DµX
†DµX = @µXR@

µXR + @µXI@
µXI + 2igXXµ

(XR@µXI �XI@µXR) + g2
X
XµX

µ
(X2

R
+X2

I
) (3)

If the mass di↵erence of XR and XI is of ⇠ O(1) MeV

and the lifetime of the heavier state is ⇠ 10
26�29

sec,

then

XR ! XI�
⇤
h

followed by �⇤
h
! � ! e+e�

could generates the positrons which would be a source of

511 keV � ray lines observed by INTEGRAL.

Note that the local Z2 symmetry guarantees the sta-

bility of the dark matter even if we consider 1/MPlanck-

suppressed nonrenormalizable operators. This is in sharp

contrast with the case of global Z2. However the local

Z2 symmetry requires extra fields compared with a sin-

glet scalar dark matter model with unbroken global Z2

symmetry.

From the model lagrangian Eq. (2), we can work out

the particle spectra at the tree level:

m2
X

= g2
X
v2
�
, (4)
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Unbroken Local Z2 symmetry
Gauge models for excited DM

The heavier state decays into the lighter state

The local Z2 model is not that simple as the usual 
Z2 scalar DM model (also for the fermion CDM)
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• Some DM models with Higgs portal

DM

DM

𝜙

𝜙

Vector DM with Z2

Scalar DM with local Z2

[1404.5257, P. Ko, WIP & Y. Tang]

[1407.6588, Seungwon Baek, P. Ko & WIP]

- muon (g-2) as well as GeV scale gamma-ray excess explained
- natural realization of excited state of DM
- free from direct detection constraint even for a light Z’

➣

➣

[1406.2980, BaBar collaboration]

Z 0

�aµ ⇡ ↵em✏2

2⇡ cos ✓2W

(for mZ0 . mµ)



In QFT

• DM could be absolutely stable due to  
unbroken local gauge symmetry (DM with 
local Z2, Z3 etc.) or topology (hidden sector 
monopole + vector DM + dark radiation)

• Longevity of DM could be due to some 
accidental symmetries (hidden sector pions 
and baryons)

• Today I will mainly talk about dark pion DM



Key Ideas
• Stability/Longevity of Dark Matter (DM)

• Local Dark Gauge Symmetry

• Thermal DM through Singlet Portals 
(especially Higgs Portal)

• Connections between Higgs, DM and Higgs 
Inflation, especially the role of “Dark Higgs”

• Improved vacuum stability, Self Interacting 
DM, GC gamma ray excess, Higgs inflation, 
CMB and LSS, etc.



Contents

• Hidden (Dark) QCD scenario 


• WIMP scenario with the S-H portal 


• SIMP scenario in dark QCD


• SIMP + dark resonances (vector, scalar, etc.)



Hidden (Dark)  
QCD Scenario



hQCD (Dark QCD):  
WIMP & SIMP

• Strassler + Zurek (2006) : hQCD + U(1)’ , new collider signatures but no discussion on 
DM from hQCD. hep-ph/0604261. PLB (2007)


• B. Patt and F. Wilczek, hep-ph/0605188. “Higgs portal”


• Hur, Ko, Jung, Lee (2007): EWSB and CDM from h-QCD, arXiv:0709.1218 [hep-ph], PLB 
(2011)


• Hur, Ko (2007) : scale inv. extension of SM+hQCD. All the mass scales (including DM 
mass) from hQCD, written in 2007, arXiv:1103.2571 [hep-ph] PRL(2011)


• Proceedings: Int.J.Mod.Phys. A23 (2008) 3348-3351, AIP Conf.Proc. 1178 (2009) 37-43, 
arXiv:1012.0103 (ICHEP), etc


• Many works on scale sym. models or dark QCD models during the past years (apology 
for not citing all of them)


• Hochberg et al. : SIMP in Dark QCD (2014, 2015)


• Hatanaka, Jung, Ko : AdS/QCD approach, arXiv:1606.02969, JHEP (2016)



Hidden Sector
• Any NP @ TeV scale is strongly constrained by 

EWPT and CKMology


• Hidden sector made of SM singlets, and less 
constrained, and could make CDM


• Hidden gauge sym can stabilize CDM


• Generic in many BSM’s including SUSY models


• Can address “QM generation of all the mass 
scales from strong dynamics in the hidden sector”  
(orthogonal to the Coleman-Weinberg) : Hur and 
Ko, PRL (2011) and earlier paper and proceedings



Nicety of QCD
• Renormalizable


• Asymptotic freedom : no Landau pole


• QM dim transmutation :


• Light hadron masses from QM dynamics


• Flavor & Baryon # conservations : 
accidental symmetries of QCD (pion is 
stable if we switch off EW interaction, 
ignoring dim-5 operators; proton is stable 
or very long lived) 1

MPlanck
H

†
Hqh�5qh



h-pion & h-baryon DMs
• In most WIMP DM models, DM is stable 

due to some ad hoc Z2 symmetry


• If the hidden sector gauge symmetry is 
confining like ordinary QCD, the lightest 
mesons and the baryons could be stable 
or long-lived >> Good CDM candidates


• If chiral sym breaking in the hidden 
sector, light h-pions can be described by 
chiral Lagrangian in the low energy limit



WIMP scenario with the 
Higgs-Singlet portal

• Hur, Jung, Ko, Lee, arXiv:0709.1218 
• Hur, Ko, 1103.2571, PRL (2011) 
• Hatanaka, Jung, Ko, 1606.02969, JHEP (2016)

And proceedings: 

• Int. J. Mod. Phys. A23 (2008) 3348-3351 
• AIP Conf. Proc. 1178 (2009) 37-43 
• ICHEP 2010 Proceeding, hep-ph/1012.0103
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Key Observation
• If we switch off gauge interactions of the 

SM, then we find 

• Higgs sector ~ Gell-Mann-Levy’s linear 
sigma model which is the EFT for QCD 
describing dynamics of pion, sigma and 
nucleons

• One Higgs doublet in 2HDM could be 
replaced by the GML linear sigma model 
for  hidden sector QCD



Model-I

Potential for H1 and H2

V (H1, H2) = −µ2
1(H

†
1H1) +

λ1

2
(H†

1H1)
2 − µ2

2(H
†
2H2)

+
λ2

2
(H†

2H2)
2 + λ3(H

†
1H1)(H

†
2H2) +

av3
2

2
σh

Stability : λ1,2 > 0 and λ1 + λ2 + 2λ3 > 0

Consider the following phase:

H1 =

(

0
v1+hSM√

2

)

, H2 =

(

π+
h

v2+σh+iπ0
h√

2

)

Correct EWSB : λ1(λ2 + a/2) ≡ λ1λ′
2 > λ2

3

– p.34/50

Not present in the two-
Higgs Doublet model
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Relic DensityModel-I : Relic density of πh
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Model-I : Direct detection rate
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Classical Scale Sym Model

• Scale invariant extension of the SM + hQCD


• Mass scale is generated by nonperturbative strong 
dynamics in the hidden sector


• EWSB and CDM from hQCD sector

All the masses (including CDM mass) 
from hidden sector strong dynamics



Appraisal of Scale Invariance

• May be the only way to understand the origin of mass 
dynamically (including spontaneous sym breaking)

• Without it, we can always write scalar mass terms for 
any scalar fields, and Dirac mass terms for Dirac 
fermions, the origin of which is completely unknown 

• Probably only way to control higher dimensional op’s 
suppressed by Planck scale



Model I (Scalar Messenger)

• SM - Messenger - Hidden Sector QCD

• Assume classically scale invariant lagrangian --> No 
mass scale in the beginning

• Chiral Symmetry Breaking in the hQCD generates a 
mass scale, which is injected to the SM by “S”

SM Hidden 
QCD

Singlet 
Scalar S

������������



Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −

λS

4
S4

+
(

Q
i
HY D

ij Dj + Q
i
H̃Y U

ij U j + L
i
HY E

ij Ej

+ L
i
H̃Y N

ij N j + SN iT CY M
ij N j + h.c.

)

Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk

– p.42/50
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Scale invariant extension of the SM
with strongly interacting hidden sector

Model considered by Meissner and Nicolai, hep-th/0612165



Model-II

Effective lagrangian far below Λh,χ ≈ 4πΛh

Lfull = Leff
hidden + LSM + Lmixing

Leff
hidden =

v2
h

4
Tr[∂µΣh∂µΣ†

h] +
v2
h

2
Tr[λSµh(Σh + Σ†

h)]

LSM = −
λ1

2
(H†

1H1)
2 −

λ1S

2
H†

1H1S
2 −

λS

8
S4

Lmixing = −v2
hΛ2

h

[

κH
H†

1H1

Λ2
h

+ κS
S2

Λ2
h

+ κ′
S

S

Λh

+ O(
SH†

1H1

Λ3
h

,
S3

Λ3
h

)

]

≈ −v2
h

[

κHH†
1H1 + κSS2 + Λhκ′

SS
]

– p.43/50
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3 neutral scalars : h,  S and hidden sigma meson
Assume h-sigma is heavy enough for simplicity



Relic densityModel-II: Relic densities of Ωπh
h2

Ωπhh
2 in the (mh1

,mπh) plane for
(a) vh = 500 GeV and tan β = 1,

(b) vh = 1 TeV and tan β = 2.

– p.46/50
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Direct Detection RateModel-II: Direct detection rates
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Comparison with the 
previous models

• Dark gauge symmetry is unbroken (DM could be 
absolutely stable if they appeared in the asymptotic 
states), but confining like QCD (No long range dark 
force, DM becomes composite)


• DM : composite hidden hadrons (mesons and baryons)


• All masses including CDM masses from dynamical sym 
breaking in the hidden sector


• Singlet scalar is necessary to connect the hidden sector 
and the visible sector


• Higgs Signal strengths : universally reduced from one



• Additional singlet scalar improves the 
vacuum stability up to Planck scale


• Can modify Higgs inflation scenario 
(Higgs-portal assisted Higgs inflation      
[arXiv:1405.1635, JCAP (2017) with Jinsu Kim, WIPark]


• The 2nd scalar could be very very elusive 


• Can we find the 2nd scalar at LHC ?


• We will see if this class of DM can survive 
the LHC Higgs data in the coming years



SIMP scenario +  
dark resonances

arXiv:1801.07726, PRD (2018) 
Soo-Min Choi, Hyunmin Lee (CAU) 

and Alexander Natale (KIAS)



SIMP Scenario in 
Dark QCD



SIMP paradigm

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.

Yonit Hochberg1,2,⇤ Eric Kuflik3,† Tomer Volansky3,‡ and Jay G. Wacker4§
1
Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA
2
Department of Physics, University of California, Berkeley, CA 94720, USA

3
Department of Physics, Tel Aviv University, Tel Aviv, Israel and

4
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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SIMP Conditions
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
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and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at
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0.2
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, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value

2->2 Self scattering : 

with a~O(1)
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There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]
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and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at
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Dark QCD + WZW
• Dark flavor symmetry G=SU(Nf)L x SU(Nf)R is SSB into 

diagonal H=SU(Nf)V by dark QCD condensation


• Effective Lagrangian for NG bosons (dark pions) contain 5-

point self interaction : WZW term for ㅠ5 (G/H) = Z (Nf > 2)

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.
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Dark mesons & WZW term
• Dark flavor symmetry G=SU(Nf)x SU(Nf) is SSB into 

diagonal H=SU(Nf) by SU(Nc) QCD-like condensation. 

• Effective action for Goldstone bosons contains a 
5-point self-interaction from Wess-Zumino-
Witten term for π5(G/H)=Z (i.e. Nf ≥3).   

LWZW =
2Nc

15⇡2
✏µ⌫⇢�Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡]

Flavor symmetry ensures stability of dark 
mesons,  natural candidates for SIMP.

NC  : topological invariant 
of 5-sphere (Q+Q’) in SU(3)

U = e2i⇡/F , ⇡ ⌘ ⇡aT a

⇡Nf = 3 :

[Wess, Zumino,
1971;Witten, 1983]
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in the absence of external gauge fields



SIMP Dark Mesons

• Large color group leads to strong 5-point interactions 
while satifying bounds on self-interactions [Hochberg, 
2014]

SIMP dark mesons
• Large color group leads to strong 5-point interactions 

while satisfying bounds on self-interactions (e.g. Bullet 
cluster, halo shape.)

,

K̃+

K̃�

⇡̃�

⇡̃+

⇡̃0

⇡̃0

⇡̃0

⇡̃0

⇡̃0

[Hochberg et al, 2014]

~const~const
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[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL (2015)]



SIMP Parameter Space

• DM self scattering :                             


• Validity of ChPT : 
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter relic
abundance for the pions, m⇡/f⇡ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, �scatter/m⇡ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and
halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for m⇡ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime m⇡/f⇡ ⇠

< 2⇡ and the self-interaction
constraint of Eq. (16).

⇤ Electronic address: yonit.hochberg@berkeley.edu
† Electronic address: kuflik@cornell.edu
‡ Electronic address: hitoshi@berkeley.edu, hi-
toshi.murayama@ipmu.jp

§ Electronic address: tomerv@post.tau.ac.il
¶ Electronic address: jgwacker@stanford.edu

[1] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker,
Phys. Rev. Lett. 113, 171301 (2014), 1402.5143.

[2] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky, and
J. G. Wacker, work in progress.

[3] J. Wess and B. Zumino, Phys.Lett. B37, 95 (1971).
[4] E. Witten, Nucl.Phys. B223, 422 (1983).

[5] E. Witten, Nucl.Phys. B223, 433 (1983).
[6] M. E. Peskin, Nucl. Phys. B 175, 197 (1980).
[7] J. Preskill, Nucl. Phys. B 177, 21 (1981).
[8] D. A. Kosower, Phys. Lett. B 144, 215 (1984).
[9] S. Hands, J. B. Kogut, M. P. Lombardo and S. E. Mor-

rison, Nucl. Phys. B 558, 327 (1999) [hep-lat/9902034].
[10] J. B. Kogut, M. A. Stephanov and D. Toublan, Phys.

Lett. B 464, 183 (1999) [hep-ph/9906346].
[11] S. Hands, I. Montvay, S. Morrison, M. Oevers,

L. Scorzato and J. Skullerud, Eur. Phys. J. C 17, 285
(2000) [hep-lat/0006018].

[12] R. Aloisio, V. Azcoiti, G. Di Carlo, A. Galante and
A. F. Grillo, Phys. Lett. B 493, 189 (2000) [hep-
lat/0009034].

[13] J. B. Kogut, D. K. Sinclair, S. J. Hands and S. E. Morri-
son, Phys. Rev. D 64, 094505 (2001) [hep-lat/0105026].

[14] S. Hands, I. Montvay, M. Oevers, L. Scorzato and
J. Skullerud, Nucl. Phys. Proc. Suppl. 94, 461 (2001)
[hep-lat/0010085].

[15] R. Aloisio, V. Azcoiti, G. Di Carlo, A. Galante and

Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727]consistent DM masses

Bullet cluster, Halo shape �self/mDM < 1 cm2/g

SIMP parameter space

Perturbativity m⇡/f⇡ < 2⇡

Self-scatt.

Perturbativity

Bullet cluster

SIMP relic

Nc>3 is required due to bounds on self-scattering.

Similar results for SU(Nf)/SO(Nf) or SU(2Nf)/Sp(2Nf).
Thursday, June 11, 15

[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727]consistent DM masses

Bullet cluster, Halo shape �self/mDM < 1 cm2/g

SIMP parameter space

Perturbativity m⇡/f⇡ < 2⇡

Self-scatt.

Perturbativity

Bullet cluster

SIMP relic

Nc>3 is required due to bounds on self-scattering.

Similar results for SU(Nf)/SO(Nf) or SU(2Nf)/Sp(2Nf).
Thursday, June 11, 15

Large Nc > 3

More serious in NNLO ChPT 
Sannino et al, 1507.01590



Issues in the SIMP w/ hQCD
• Dark flavor sym is not good enough to stabilize dark pion 

(We have to assume dim-5 operator is highly suppressed)


• Dark baryons can make additional contribution to DM of the 
universe (It could produce additional diagrams for SIMP)


• Validity region of ChPT : need to include resonances (dark 
rho meson, dark sigma meson, etc.              this talk)


• How to achieve Kinetic equilibrium with the SM ? (Dark 
sigma meson or adding singlet scalar S may help. Or lifting 
the mass degeneracy of dark pionscan help. Work in 
progress.)



Digression on ChPT + VM
• We consider Gglobal SSB into Hglobal : non Linear sigma model on 

Gglobal/Hglobal is equivalent to linear sigma model on Gglobal X Hlocal 


• Vector meson ~ gauge field for Hlocal

Note for chiral lagrangian with light vector mesons

The Author

September 1, 2017

1 Lagrangians

1.1 Goldstone bosons + vector mesons

We consider QCD like system where global Gglobal = SU(3)L ⇥ SU(3)R is spontaneously

broken into Hglobal = SU(3)V . Then the nonlinear realization on Gglobal/Hglobal is equiva-

lent to linear sigma model with Gglobal ⇥Hlocal.

Consider the following fields with the following transformation properties under global

SU(3)L ⇥ SU(3)R and local SU(3)V :

⇠L(x) ! U(x)⇠L(x)L
†

(1)

⇠R(x) ! U(x)⇠R(x)R
†

(2)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†
(x) (3)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (4)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)lµ (5)

lµ and rµ can be considered as gauge fields of local SU(3)L ⇥ SU(3)R gauge symmetries

and identified as �, Z,W
±
, etc..

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field U(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

⌃(x) ! L⌃(x)R
†

Note that the ⇡ field is normalzied in such a way that

⇡(x) =
1p
2

0

B@

1p
2
⇡
0
+

1p
6
⌘8 +

1p
3
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+
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+

⇡
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⇡
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+
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• CCWZ (1969) 
• Bando, Kugo, Yamawaki, Phys. Rept. 164, 217 (1988)



Vector meson as hidden 
local gauge boson

Note for chiral lagrangian with light vector mesons

The Author
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We consider QCD like system where global Gglobal = SU(3)L ⇥ SU(3)R is spontaneously

broken into Hglobal = SU(3)V . Then the nonlinear realization on Gglobal/Hglobal is equiva-

lent to linear sigma model with Gglobal ⇥Hlocal.

Consider the following fields with the following transformation properties under global

SU(3)L ⇥ SU(3)R and local SU(3)V :

⇠L(x) ! U(x)⇠L(x)L
†

(1)

⇠R(x) ! U(x)⇠R(x)R
†

(2)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†
(x) (3)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (4)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)lµ (5)

lµ and rµ can be considered as gauge fields of local SU(3)L ⇥ SU(3)R gauge symmetries

and identified as �, Z,W
±
, etc..

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field U(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

⌃(x) ! L⌃(x)R
†

Note that the ⇡ field is normalzied in such a way that
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In real hadronic world, there are mixings between ⌘8 and ⌘0, and also between !8 and

!0 with mixing angles ✓p and ✓V , respectively:

⌘ = ⌘8 cos ✓P � ⌘0 sin ✓P (8)

⌘
0

= ⌘8 sin ✓P + ⌘0 cos ✓P (9)
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r
2
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3
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In this paper, we will ignore mixing for the time being, and consider ⌘0, ⌘8, !8µ and

!0µ as the basis, and discuss the physics thereof.

The chiral Lagrangian for pions and vector mesons is given by

L = LA + LmLB + Lkin(V ) + �
anom

(⇠L, ⇠R, V, l, r) (12)
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2
⇡

4
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h
(Dµ⇠L)⇠

†
L
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†
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i2
(13)

Lm = �f
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h
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†
)

i
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f
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h
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†
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2
Tr [Fµ⌫F

µ⌫
] (16)

Fµ⌫ = @µV⌫ � @⌫Vµ � ig[Vµ, V⌫ ] (17)

The µ term breaks chiral symmetry explicitly, thereby generating nonzero pion and kaon

masses:

m
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mK± = µ(mu +ms) (19)

m
2
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Ch Lagrangian (pi,V)
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For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
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h
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⌃
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i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3

a~2 and g~6 
in real QCD. 

In Dark QCD,  
we consider  
they are free 



Another useful quantities

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.
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Here `V’ is the vector meson associated with 
hidden local gauge symmetry



WZW (gauged)
PYUNGWON KO

r„(U,l„,r„)=CJ,d'x Tr(a')
+5CJ,d x Tr[i(la +rP ) [—(dl 1+1dl)a+(dr r+r dr)P]+(dl dUrU ' d—r dU ' IU)

+(rU 'lUP lU—rU 'a )+—,'[(la) —(rP) ]+i[1a+r P]
+i[(dr r+r dr)U lU (dl—1+1dl)UrU ']+i [1UrU 'la+rU 'lUrP] .

+[r U 'lU —1 UrU '+ —,'(UrU '1) ]],

where M is a five-dimensional manifold whose boundary
is the ordinary Minkowski manifold M . This
6=U(3)L XU(3)R-invariant form of the anomaly was
used in the original paper by Fujiwara et al. [29]. How-
ever, this form of the anomaly is not consistent with
current algebra and modified PCAC in the following
sense. From the above Lagrangian, Eq. (1), we can con-
struct the left-handed and the right-handed currents jL„
and j&„. Then, we find that the axial-vector current J„'"'"
is given by

I„'"'"(x)= f D ~—(x)— e„&Q 3'(x)(3 A~(x) .

If we take the divergence of J„'"'"(x)and use the Euler-
Lagrange equation for vr(x) derived from Eq. (1), we can
show that the axial-vector current for the third com-
ponent of the isospin, A „'""',satisfies

I

gpJ3axial( ) y 2

+(1——,
' ) e„)3()"2 "(x)B A~(x),

where P o(x) is an interpolating pion field appearing in
the calculation in the Lehmann-Symanzik-Zimmermann
(LSZ) formalism. This is not consistent with the modified
PCAC relation [30] which has the coefficient 1 in front of
Q instead of (1——,

' ) =—', . This in turn means that we get
too small a rate for m ~yy when it is calculated by the
current algebra and the modified PCAC in the LSZ for-
malism. To keep the consistency between the effective-
Lagrangian approach and the good old current-algebra
and PCAC calculation of m ~yy in the LSZ formalism,
we should modify the I.R-symmetric anomaly form, Eq.
(11). The correct answer is to keep the conservation of
vector currents, sacrificing that of axial-vector currents
as done by Bardeen [31]. Bardeen's form of the anomaly
satisfies the following condition under the local
G =U(3)L XU(3)R:

51 wz(U, l, r)= J d x (eL—eR ) F~ F~— (F~—A +A—F~A+A F~)——A
24m

L R V 3 A 3 V (12)

where

I wz(U, l, r)=I LR(U, l, r)—I LR(U = 1, l, r) . (13)

This coincides with the original form of Mess and Zumi-
no. If we consider only electromagnetic fields as external
gauge fields, we have l„=r„=eQA„. Since
I LR(U = l, l, r) is antisymmetric under l~r, the two
forms of anomalies, I L~ and I ~z are identical.

D. The W'Z anomaly in the presence of vector mesons

Electromagnetic decays of vector mesons such as
co~~ y, co—+pm, etc. , are all intrinsic parity-violating

V= —,'(1+r), .A =—,'(1 r), —
F~=dV+i(V +A ),
F~ =dA+i(VA+AV) .

For the vector transformation, eL=ez, and the above
anomaly vanishes identically. This in turn ensures the
conservation of the vector currents, as we anticipated.
The minimal solution to this equation is given simply

in terms of I LR(U, l, r) as

I

processes, so that we might be able to describe them in
the effective-Lagrangian approach by including terms
with the Levi-Civita tensor. One can achieve this by add-
ing homogeneous solutions of Eq. (12) to Eq. (13). Since
the newly added terms are homogeneous solutions of the
anomaly equation (i.e., gauge invariant, or 51=0), there
will be no additional anomaly and the anomalous low-
energy theorems remain intact.
The correct form of the WZ anomaly including vector

mesons is conveniently expressed in terms of the follow-
ing gauge-covariant entities [29]:

aL =DgL gL =aL —igI'+ll
aR Dk kR aR ig~++
aL(r) dkL(R) kL(R)

1=4.'1'4, r =OR 'r'4
F~=dV—ig V
F, =gL F, gL =gL(dl il')gL, —
FR =gR FR 4 gR(«Rir )gR



WZW with vector mesons

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R
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1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.

FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and
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vector meson masses are given by LB :

LB = m
2
V
TrVµV

µ
� 2igV ⇡⇡Tr (Vµ[@

µ
⇡,⇡]) (21)

m
2
V
= ag

2
f
2
⇡

(22)

gV ⇡⇡ =
1

2
ag (23)

In ordinary hadron system a ' 2, but this can be con-

sidered a free parameter in general. Before we show the

anomalous WZW Lagrangian, it is convenient to define

the following objects:

↵̂L = D⇠L · ⇠
†
L
= ↵L � igV + il̂ (24)

↵̂R = D⇠R · ⇠
†
R
= ↵R � igV + ir̂ (25)

↵L = d⇠L · ⇠
†
L
, (26)

↵R = d⇠R · ⇠
†
R

(27)

FV = dV � igV
2 (28)

The anomalous WZW in the presence of light vector

mesons are given by

�anom = �WZW +
4X

i=1

ciLi (29)

L1 = Tr
⇥
↵̂
3
L
↵̂R � ↵̂

3
R
↵̂L

⇤
(30)

L2 = Tr [↵̂L↵̂R↵̂L↵̂R] (31)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L)] (32)

L4 = iTr
h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
. (33)

Let us ignore the external gauge fields by setting lµ =

rµ = 0 and keep only the pions and vector mesons Vµ,

thus L3,4 are zero. Under these assumptions then

�anom = LWZW � 15C (c1L1 + c2L2)c1�c2=�1 (34)

with

C = �i
Nc

240⇡2
, (35)

and LWZW is the familiar Wess-Zumino-Witten term for

pions [10–12]:

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�

Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡] (36)

Expanding ↵L,R in terms of ⇡ up to O(g/f3
⇡
) results in

L1 = �
4c1gC

f3
⇡

✏
µ⌫⇢�

Tr[@µ⇡@⌫⇡@⇢⇡V�] (37)

and

L2 =
4c2gC

f3
⇡

✏
µ⌫⇢�

Tr[Vµ@⌫⇡@⇢⇡@�⇡@⇢⇡] (38)

where C is defined in Eq. 35. These new vector meson

terms generate additional 3-to-2 interactions between the

pions, as illustrated in Fig. 1.

An important constraint on the model is the 2-to-

2 scattering cross section. The bullet cluster con-

straints place an upper limit of around 1 cm
2
/g on

�scatter/mDM [6]. In our model this 2-to-2 cross section

can be calculated by the ChPT Lagrangian:

�scatter =
m

2
⇡

192⇡f4
⇡
m

4
V

⇥

(81a4g4f4
⇡
+ 216a2f2

⇡
g
2
m

2
V
+ 154m4

V
)

(39)

where the degenerate pion (vector meson masses) are

given by m⇡ (mV ). In the limit where the vector mesons

decouple, �scatter reduces to the value found in Ref. [8].

The upper bounds on �scatter/m⇡ places a lower bound

on m⇡; in the minimal QCD-like model without vec-

tor mesons, this produces a tension between the require-

ments that m⇡/f⇡ < 2⇡ and the lower bound of m⇡ [8].

Relic Density.—In the SIMP model, where the 3 ! 2

number-changing processes are dominant, the resulting

Boltzmann equation for one species of DM is given by

dnDM

dt
+ 3HnDM = �h�v

2
i3!2(n

3
DM

� n
2
DM

n
eq

DM
).

In the presence of an exact flavor symmetry there are

N⇡ = 8 mass degenerate pions, and suppose n1 = n2 =

. . . = n8 = n, we can define nDM =
P8

i=1 ni. Thus the

resulting Boltzmann equation for the total DM density

is

Y
0
DM

= �
⇢⌃h�v2i

N3
⇡
x5

(Y 3
DM

� Y
2
DM

Y
eq

DM
). (40)

where ⌃h�v2i is the sum of the relevant sub-processes af-

ter thermal averaging, with Y = nDM/s, ⇢ = s
2(m⇡)
H(m⇡)

, and

x = m⇡/T . The SIMP paradigm requires that the dark

sector remains in kinetic equilibrium with the SM [7],

this is accomplished via a dark Higgs [13] or additional

dark gauge bosons such as the Z
0 [14, 15], which are not

discussed further in this work.

In the case of a resonance (mV ⇡ 3m⇡) the thermal av-

erage takes a Breit-Wigner form as discussed in Ref. [16]:

h�ijk!mnv
2
iR =

3

4
⇡x

3
1X

l=0

bl

l!
Gl(zR;x), (41)

with zR = ✏ + i�, � = mV �
9m2

⇡
, and ✏ = m

2
V �9m2

⇡
9m2

⇡
. In

the case of SIMP mesons with a significant vector meson

We choose a small epsilon [say, 0.1 (near resonance) ] 
and a small gamma (NWA)

New diagrams involveng dark vector mesons

⇡+⇡�⇡0 ! ! ! K+K�(K0K0)

(for 3 pi resonance case)



Results

•The allowed parameter space is in a better 
shape now, especially for 2 pi resonance 
case
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.
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FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and



Masses of V and Pi
• In QCD, the origin of vector meson and pion masses are 

not exactly the same.

m2
V ⇠ ⇤2

m2
⇡ ⇠ mq⇤

<latexit sha1_base64="l2GZYgUyGRP3i27tRdC5xA0K0fI="></latexit>

• We can tune the QCD scale and the current quark mass 
independently, thus varying masses of dark vector 
mesons and dark pions independently 
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FIG. 3: Similar contours of relic density for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass as in Fig. 2. Vector

meson masses are taken o↵ the resonance with ✏V = 0.3, and c1 � c2 = �1 and c3 = 1 are chosen.

u2 = 1
3 (v

2
1 + v22 + v23) for three-pion resonances. Then,

we can solve the Boltzmann equation by fixing the vector

meson masses or ✏V and find the condition for the correct

relic density.

In Fig. 2, we illustrate contours of constant relic den-

sity (⌦h2
⇡ 0.119) for m⇡ vs m⇡/f⇡ and the dark

pion self-scattering cross section as a function of m⇡

for the value of f⇡ that yields the correct relic den-

sity. Parametrizing vector meson masses by mV =

2(3)m⇡
p
1 + ✏V on left(right) plots, we have chosen c1 �

c2 = �1, c3 = 1 and ✏V = 0.1 for both plots in Fig. 2.

Taking the WZW terms without vector mesons, we show

the relic density condition in black dot-dashed lines and

the self-scattering cross section without vector mesons in

black dotted lines in both plots, respectively. For di↵er-

ent choices of a, the relic density condition is satisfied in

colored solid lines and the corresponding self-scattering

cross sections are shown in colored dashed lines.

As can be seen in Fig. 2, the value of m⇡/f⇡ needed

for the correct relic density is reduced due to vector me-

son resonances with a = O(1) (a ⌧ 1) for mV ⇠ 2m⇡

(mV ⇠ 3m⇡), as compared with the case with the WZW

terms without vector mesons. The self-scattering cross

section in our scenario with vector mesons is greatly re-

duced due to a smaller value of m⇡/f⇡ than in the case

without vector mesons. We have checked that varying

the anomalous parameters c1,2,3, acceptable values for

the relic density and the self-scattering cross section can

be obtained within the validity region of chiral perturba-

tion theory with light vector mesons.

We remark on the vector meson coupling, gV ⇡⇡ =
3
2 (1)

p
a(m⇡/f⇡)

p
1 + ✏V , near the three(two)-pion reso-

nance, from Eqs. (14) and (15). First, for mV ⇠ 3m⇡,

c1 � c2 = �1 and c3 = 1 (on right in Fig. 2), the correct

relic density requires m⇡/f⇡ . 6(4.5) for a = 0.1(0.01)

and m⇡ . 1GeV, but we need gV ⇡⇡ . 3.0(0.7) in this

case. For mV ⇠ 2m⇡, c1 � c2 = �1 and c3 = 1

(on left in Fig. 2), the correct relic density requires

m⇡/f⇡ . 5.5(4) for a = 1(0.1) and m⇡ . 1GeV, result-

ing in gV ⇡⇡ . 5.8(1.3), which is comparable to the case

with mV ⇠ 3m⇡. Then, the unitarity violation is delayed

to much higher energy scales due to vector mesons in our

scenario, although not far from the scale of vector meson

masses, for instance, through V ⇡ ! ⇡⇡.

O↵ the resonance poles, there is still a meaningful

improvement of perturbativity with vector mesons. In

Figs. 3 and 4, we take the vector meson masses o↵

the resonance poles to ✏V = 0.3 and 0.5 with respect

to mV = 2m⇡ and mV = 3m⇡ on left and right panels,

respectively. With mV = 3m⇡
p
1 + ✏V and ✏V = 0.5,

the correct relic density requires m⇡/f⇡ . 8(6) for

a = 0.1(0.01) and m⇡ . 1GeV, thus gV ⇡⇡ . 4.6(1.6);

with mV = 2m⇡
p
1 + ✏V and ✏V = 0.3, the correct

relic density requires m⇡/f⇡ . 8(6) for a = 1(0.1) and

m⇡ . 1GeV, thus gV ⇡⇡ . 9(2). Therefore, we may tol-

erate vector meson masses to be further o↵ the resonance

conditions, mV = 2m⇡ or mV = 3m⇡, being consistent

with perturbativity and extending a viable parameter

space.

Before closing, two remarks are in order. First of all,
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FIG. 4: Similar contours of relic density for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass as in Fig. 2. Vector

meson masses are taken o↵ the resonance with ✏V = 0.5, and c1 � c2 = �1 and c3 = 1 are chosen.

if the assumption of degenerate masses is relaxed, the

thermal relic density could be achieved in some interest-

ing parameter space, which we hope to return in a future

publication. Secondly, in the SIMP scenario, the dark

sector is required to remain in kinetic equilibrium with

the SM [13]. This is accomplished via portal interac-

tions for dark scalars such as sigma field (or dark Higgs)

[35, 36] or dark photon [27, 37, 38], the details of which

would deserve a further study for the detection of SIMP

dark matter.

CONCLUSIONS

We have considered a SIMP scenario where dark pi-

ons in the dark QCD are light dark matter candidates.

Including dark vector mesons in the hidden gauge sym-

metry scheme, we showed that the 3 ! 2 annihilation

cross section can be enhanced near resonance poles to re-

alize the SIMP freeze-out mechanism, while reducing the

self-scattering cross section. As a result, we proposed

a consistent scenario for natural light dark matter with

3 ! 2 processes where there is no perturbativity prob-

lem for the parameter values rendering the correct relic

density.
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APPENDIX

Here we provide the details for the chiral Lagrangian

with vector mesons for QCD-like chiral symmetry,

SU(3)L ⇥ SU(3)R/SU(3)V , in the hidden local gauge

symmetry scheme. We also list the anomalous WZW

Lagrangian that is responsible for four-point interactions

between dark pions and vector mesons.

It is convenient to introduce the fields which transform

under global SU(3)L ⇥ SU(3)R and local SU(3)V as fol-

lows:

⇠L(x) ! U(x)⇠L(x)L
† (27)

⇠R(x) ! U(x)⇠R(x)R
† (28)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†(x) (29)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (30)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)rµ (31)

Here L 2 SU(3)L, R 2 SU(3)R and U(x) 2 SU(3)V ,

and we have implemented the global SU(3)L ⇥ SU(3)R
as local symmetries, by introducing lµ and rµ as gauge

fields of the local SU(3)L⇥SU(3)R gauge symmetries and

identifying them as the gauge bosons of any additional

dark gauge symmetries.

Then the chiral Lagrangian for dark pions and vector



Conclusion
• Hidden (dark) QCD models make an interesting possibility 

to study the origin of EWSB, (C)DM


• WIMP scenario is still viable, and will be tested to some 
extent by precise measurements of the Higgs signal 
strength and by discovery of the singlet scalar, which is 
however a formidable task unless we are very lucky


• SIMP scenario using 3->2 scattering via WZW term is 
interesting, but there are a few issues which ask for 
further study (dark resonance could play an important role 
for thermal relic and kinetic contact with the SM sector)
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Digress on importance
of gauge invariance, unitarity 

and renormalizability
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lead to incorrect physics quite often !!
Better to be careful, and work in more!

complete models for ID or CS.



Comparison with the EFT approach 

• SFDM scenario is ruled out in the EFT 
• We may lose imformation in DM pheno. 

A. Djouadi, et.al. 2011 
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS �
1

2
m2

SS
2
�
�HS

2
H†HS2

�
�S
4
S4 (1.1)

Lfermion =  [i� · @ �m ] �
�H 
⇤

H†H   (1.2)

Lvector = �
1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 
under ad hoc 
Z2 symmetry

de Simone et al (2014) arXiv:1112.3299, … 1402.6287, etc.
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS �
1

2
m2

SS
2
�
�HS

2
H†HS2

�
�S
4
S4 (1.1)

Lfermion =  [i� · @ �m ] �
�H 
⇤

H†H   (1.2)

Lvector = �
1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

Higgs portal DM as examples

• Scalar CDM : looks OK, renorm. .. BUT .....

• Fermion CDM : nonrenormalizable

• Vector CDM : looks OK, but it has a number of 
problems (in fact, it is not renormalizable)

All invariant 
under ad hoc 
Z2 symmetry



Usual story within EFT

• Strong bounds from direct detection exp’s put 
stringent bounds on the Higgs coupling to the dark 
matters

• So, the invisible Higgs decay is suppressed

• There is only one SM Higgs boson with the signal 
strengths equal to ONE if the invisible Higgs decay is 
ignored

• All these conclusions are not reproduced in the full 
theories (renormalizable) however



Case of Higgs portal Vector DM

• Although this model looks renormalizable, it is not 
really renormalizable, since there is no agency for 
vector boson mass generation

• Need to a new Higgs that gives mass to VDM

• A complete model should be something like this:

3.6 Comparison with the e↵ective lagrangian approach

In this subsection, we would like to compare our model with the so-called Higgs

portal fermion dark matter model [22], where the singlet scalar S is presumed to be

integrated out, resulting in the following model lagrangian:

Le↵ =  

✓
m0 +

H†H

⇤

◆
 . (3.13)

Within this model, there is only one Higgs boson and its coupling to the DM is

strongly constrained by the direct detection experiments. This result is very di↵er-

ent from our analysis [2], where there is a generic cancellation between H1 and H2

contributions in the direct detection rates. In fact, �SI depends also on (sin↵ cos↵)2,

and it becomes zero when we ignore the mixing between the SM Higgs boson and the

singlet scalar S (see Eq. (3.16) of Ref. [2]). This result can never be obtained in the

approach based on the above e↵ective lagrangian (3.13). In our case the correlation

between Hi� � and the direct detection cross section is not that strong compared

with the results in Ref. [22]. It is important to consider the renormalizable models

in order to discuss phenomenology related with the singlet fermion dark matter and

Higgs bosons.

The same arguments also applies to the Higgs portal vector DM models, which

is assumed to be described by the following lagrangian:

L = �m2

V
VµV

µ
�
�V H

4
H†HVµV

µ
�
�V
4
(VµV

µ)2 . (3.14)

Although this lagrangian looks power-counting renormalizable, it is not really renor-

malizable. This is well known from the old intermediate vector boson theory for

weak gauge boson W±. In order to give a mass to a spin-1 gauge boson, we need

some symmetry breaking agency. Assuming a new complex scalar �X breaks the

gauge symmetry spontanesouly, one ends up with a new scalar boson from �X which

would mix with the SM Higgs boson by Higgs portal. Therefore there will be two

Higgs-like scalar boson in the end, and phenomenology in the scalar sector should

be similar to that of the model described here and in Ref. [2]. We leave the detailed

discussions of this issue for the future publication [21].

4 Vacuum structure

Because of the presence of the singlet scalar, the vacuum structure of this model is

not that trivial. Since the Higgs potential is the quartic function of the Higgs fields

(at the tree level), there could be another nondegererate local minimum in the singlet

Higgs direction unless some symmetry exists. If that is the case, our EW vacuum

may not be global and its stability is unclear. In addition to this, as we mentioned

in Introduction, the EW vacuum could be destabilized at a high energy scale by the

– 9 –



             here

• There appear a new singlet scalar h_X from phi_X , which mixes 
with the SM Higgs boson through Higgs portal

• The effects must be similar to the singlet scalar in the fermion 
CDM model, and generically true in the DM with dark gauge sym

• Important to consider a minimal renormalizable and unitary 
model to discuss physics correctly [Baek, Ko, Park and Senaha, 
arXiv:1212.2131 (JHEP)]

• Can accommodate GeV scale gamma ray excess from GC
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1 Introduction

In this paper, we revisit the Higgs-portal vector DM which is a U(1)X gauge boson including

the hidden sector scalar that would break U(1)X and give the mass to the vector DM Xµ.

2 Abelian Model

2.1 Abelian Model for vector dark matter

Let us consider a vector boson dark matter Xµ, which is assumed to be a gauge boson

associated with Abelian dark symmetry U(1)X . The simplest model will be without any

matter fields charged under U(1)X except for a complex scalar �X whose VEV will generate

the mass for Xµ:

LV DM = �1

4
Xµ⌫X

µ⌫
+Dµ�

†
X
D

µ
�X � �X

4
(�

†
X
�X � v

2
X)

2
+ �XH�

†
X
�XH

†
H (2.1)

in addition to the usual SM lagrangian.

Assuming that the U(1)X -charged �X develops a nonzero VEV and thus breaks U(1)X

spontaneously,

h0|�X |0i = vX + hX(x),

– 1 –

amount, unlike the claim made in literatures [1] based on the effective Lagrangian (1.2).

The decoupling of the 2nd scalar boson occurs rather slowly, since the mass mixing between

the SM Higgs boson and the new singlet scalar is due to the dim-2 operator. Also the mixing

between two scalar bosons makes the signal strength of two physical Higgs-like bosons less

than one, and make it difficult to detect both of them at the LHC. Since there is now an

evidence for a new boson at 125 GeV at the LHC [6, 7], the 2nd scalar boson in the singlet

fermion DM model is very difficult to observe at the LHC because its signal strength is

less than 0.3 [3, 8]. Also an extra singlet scalar saves the vacuum instability for mH = 125

GeV [8–10]. The electroweak (EW) vacuum can be still stable upto Planck scale even for

mH = 125 GeV [8]. These phenomena would be very generic in general hidden sector DM

models [11]. In short, it is very important to consider a renormalizable model when one

considers the phenomenology of a singlet fermion CDM.

Now let us turn to the Higgs portal vector dark matter described by (1.3) [1]. This

model is very simple, compact and seemingly renormalizable since it has only dim-2 and

dim-4 operators. However, it is not really renormalizable and violates unitarity, just like the

intermediate vector boson model for massive weak gauge bosons before Higgs mechanism

was developed. The Higgs portal VDM model based on (1.3) is a sort of an effective

lagrangian which has to be UV completed. It lacks including the dark Higgs field, ϕ(x),

that would mix with the SM Higgs field, h(x). Therefore the model (1.3) does not capture

dark matter or Higgs boson phenomenology correctly. It is the purpose of this work to

propose a simple UV completion of the model (1.3), and deduce the correct phenomenology

of vector CDM and two Higgs-like scalar bosons. Qualitative aspects of our model are

similar to those presented in Ref.s [3, 8], although there are some quantitative differences

due to the vector nature of the CDM.

This work is organized as follows. In Sec. 2, we define the model by including the

hidden sector Higgs field that generates the vector dark matter mass by the usual Higgs

mechanism. Then we present dark matter and collider phenomenology in the following

section. The vacuum structure and the vacuum stability issues are discussed in Sec. 4, and

the results are summarized in Sec. 5.

2 Model

Let us consider a vector boson dark matter, Xµ, which is assumed to be a gauge boson

associated with Abelian dark gauge symmetry U(1)X . The simplest model will be without

any matter fields charged under U(1)X except for a complex scalar, Φ, whose VEV will

generate the mass for Xµ:

LV DM = −1

4
XµνX

µν + (DµΦ)
†(DµΦ)− λΦ

4

(
Φ†Φ− v2Φ

2

)2

−λHΦ

(
H†H − v2H

2

)(
Φ†Φ− v2Φ

2

)
, (2.1)

in addition to the SM lagrangian. The covariant derivative is defined as

DµΦ = (∂µ + igXQΦXµ)Φ,

– 2 –

Xµ ⌘ Vµ
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Figure 6. The scattered plot of σp as a function of MX . The big (small) points (do not) satisfy the
WMAP relic density constraint within 3 σ, while the red-(black-)colored points gives r1 > 0.7(r1 <
0.7). The grey region is excluded by the XENON100 experiment. The dashed line denotes the
sensitivity of the next XENON experiment, XENON1T.

Since there is additional direction of Φ, the Higgs potential can have minima other than

our EW vacuum. In the following, we investigate whether the EW vacuum is global or not.

We closely follow the analysis done in Ref. [8].

– 9 –

Allowed Region

Allowed Region

Figure 8. The vacuum stability and perturbativity constraints in the ↵-m2 plane. We take
m1 = 125 GeV, g

X
= 0.05, MX = m2/2 and v� = MX/(gXQ�).

where we have used Eq. (4.8) in the second line. Therefore, as long as Eqs. (4.1) and (4.2)

are satisfied, the EW vacuum is always the global minimum. Note that this is not the case

for the generic Higgs potential [11].

Although the EW vacuum is stable at the EW scale, its stability up to Planck scale

(MPl ' 1.22⇥1019 GeV) is nontrivial question since a renormalization group (RG) e↵ect of

the top quark can drive �H negative at certain high-energy scale, leading to an unbounded-

from-below Higgs potential or a minimum that may be deeper than the EW vacuum. We

will work out this question by solving RG equations with respect to the Higgs quartic

couplings and the U(1)X gauge coupling. The one-loop � functions of those couplings are

listed in Appendix A. In addition to the vacuum stability, we also take account of the

perturbativity of the couplings. To be specific, we impose �i(Q) < 4⇡ (i = H,H�,�) and

g2
X
(Q) < 4⇡ up to Q = MPl.

Fig. 8 shows the vacuum stability and the perturbativity constraints in the ↵-m2 plane.

We take m1 = 125 GeV, g
X

= 0.05, MX = m2/2 and v� = MX/(gXQ�). The vacuum

stability constraint is denoted by red line; i.e., the region above the red line is allowed

for ↵ > 0, and it is the other way around for ↵ < 0. The perturbativity requirement is

represented by blue line; i.e., the region below the blue line is allowed for ↵ > 0, and it is the

other way around for ↵ < 0. For ↵ < 0, the region above the dotted black line is excluded

by Eq. (4.1). Putting all together, for ↵ > 0 the region between the red and blue lines

is allowed while for ↵ < 0 the region between the dotted black and blue lines is allowed.

– 13 –

New scalar improves 
EW vacuum stability 
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1 Introduction

The so-called Higgs portal cold dark matter (CDM) model is an interesting possibility for

the nonbaryonic dark matter of the universe. The dark matter fields are assumed to be the

standard model (SM) gauge singlets, and could be a scalar (S), a singlet fermion ( ) or

a vector boson (V ) depending on their spin. The Lagrangian of these CD-M’s are usually

taken as [1–4]

Lscalar =
1

2
@µS@

µS �
1

2
m2

SS
2
�
�HS

2
H†HS2

�
�S
4
S4 (1.1)

Lfermion =  [i� · @ �m ] �
�H 
⇤

H†H   (1.2)

Lvector = �
1

4
Vµ⌫V

µ⌫ +
1

2
m2

V VµV
µ +

1

4
�V (VµV

µ)2 +
1

2
�HV H

†HVµV
µ. (1.3)

Dark matter fields (S, , V ) are assumed to be odd under new discrete Z2 symmetry:

(S, , V ) ! �(S, , V ) in order to guarantee the stability of CDM. This symmetry removes

the kinetic mixing between the Vµ⌫ and the U(1)Y gauge field Bµ⌫ , making V stable.

The scalar CDM model (1.1) is fineis satisfactory both theoretically and phenomeno-

logically, as long as Z2 symmetry is unbroken. The model is renormalizable and can be

considered to high energy scale as long as the Landau pole is not hit. Large region of

parameter space is still allowed by the relic density and direct detection experiments [3].

On the other hand, the other two cases have problems.

Let us first consider the fermionic CDM model (1.2). This model is nonrenormalizable,

and has to be UV completed. The simplest way to achieve the UV completion of (1.2) is to

– 1 –

All invariant 
under ad hoc 
Z2 symmetry

de Simone et al (2014) arXiv:1112.3299, … 1402.6287, etc.



Example: Fermi-LAT 𝜸-ray excess
• Gamma-ray excess in the direction of GC

!79

[1402.6703, T. Daylan et.al.]

GC : b ⇠ l . 0.1�

GeV scale excess!﹀
extended

(Talk by Dan Hooper)



GC gamma ray in VDM

!80

V µ

V ν

b̄/τ̄

b/τ

H1,2

Figure 2. Dominant s channel b+ b̄ (and τ + τ̄ ) production
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V ν

H1

H1
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H1

H1

H1,2

V µ H1

V ν H1

V µ H1

V ν H1

Figure 3. Dominant s/t-channel production of H1s that decay dominantly to b+ b̄

3.4 Dark matter relic density

The observed GeV scale γ-ray spectrum may be explained if DM annihilates mainly into bb
with a velocity-averaged annihilation cross section close to the canonical value of thermal relic
dark matter. This implies that 30GeV ! mV ! 40GeV in case of the s-channel annihilation
(Fig. 2) scenario. It is also possible to produce bb̄ with the nearly same energy from the decay
of highly non-relativistic φ which is produced from the annihilation of DM having mass of
60GeV ! mV ! 80GeV (Fig. 3). In both cases, it is expected to have τ τ̄ and cc̄ productions
too in the final states, because H1 will decay into them with branching ratios about 7% and
3%.

In the process of Fig. 2, the thermally-averaged annihilation cross section of VDM is
given by

⟨σvrel⟩ff̄ =
∑

f

(gXsαcα)
2

3π
m2

X

∣

∣

∣

∣

∣

∑

i

1

s−m2
i + imiΓi

∣

∣

∣

∣

∣

2
(

mf

vH

)2
(

1−
4m2

f

s

)3/2

, (3.11)

where mf is the mass of a SM fermion f . Note that Eq. (3.11) is suppressed by a factor s2αm
2
f .

Hence a large enough annihilation cross section for the right amount of relic density can be
achieved only around the resonance region. However in the resonance region the annihilation
cross section varies a lot, as the Mandalstam s-variable varies from the value at freeze-out to
the value in a dark matter halo at present. Therefore, this process can not be used for the
GeV scale γ-ray spectrum from the galactic center.

On the other hand, in the process of Fig. 3 for mφ < mV ! 80GeV, the thermally-
averaged annihilation cross section of VDM is given by

⟨σvrel⟩tot = ⟨σvrel⟩ff̄ + ⟨σvrel⟩φφ (3.12)

– 6 –

[1404.5257, P. Ko, WIP & Y. Tang] JCAP (2014) 
(Also Celine Boehm et al.  1404.4977, PRD)

H2 : 125 GeV Higgs
H1 : present in VDM 
with dark gauge sym    



X

X

H2

H2

FIG. 1: Feynman diagram due to the e↵ective operator X
2
H

2
2 (X̄�5XH

2
2 for fermionic X or

XµX
µ
H

2
2 for vector X). The actual annihilation process may occur through s or t channel, and

contact interaction. Details in the gray bubble depend on various ultraviolet completions. The
produced H2s can have two-, three- or even four-body decay channels.

For DM density distribution, we use the following generalized NFW profile [87],

⇢ (r) = ⇢�

h
r�

r

i� 1 + r�/rc

1 + r/rc

�3��

, (2.8)

with parameters rc ' 20kpc and ⇢� ' 0.4GeV/cm3. We shall adopt the index � = 1.26 if
not stated otherwise.

III. NUMERICAL ANALYSIS

We first show three cases for the gamma-ray spectrum in Fig. 2. The vertical axis marks
the conventional

E
2dN

dE
⌘ E

2
�

1

�⌦

Z

�⌦

d
2�

dE�d⌦
, (3.1)

where �⌦ indicates the region of interest. The 24 data points we used to compare with are
from Ref. [10], denoted as CCW hereafter.

As we can see, di↵erent parameter sets can give di↵erent spectrum shape, especially in
the high energy regime. When the branching ratios of H2 ! ��, Z� are increasing, we can
see the gamma lines more easily around E ' MH2/2. Since the annihilation cross section is
at order of 10�26cm3/s and the branching ratios of H2 ! ��, Z� are around 0.2% at most,
the considered parameters are still consistent with constraint from gamma-line searches.

We now use the �
2 function and find its minimum to find out the best fit:

�
2 (MX ,MH2 , h�vi) =

X

i,j

(µi � fi)⌃
�1
ij

(µj � fj) , (3.2)

where µi and fi are the predicted and measured fluxes in the i-th energy bin respectively, and
⌃ is the 24⇥24 covariance matrix. We take the numerical values for fi and ⌃ from CCW [10].
Minimizing the �

2 against fi with respect to MX , MH2 and h�vi gives the best-fit points,
and then two-dimensional 1�, 2� and 3� contours are defined at ��

2
⌘ �

2
� �

2
min = 2.3,

6.2 and 11.8, respectively.
Fig. 3 is our main result. In the left panel, MX , MH2 and h�vi are freely varied, so that

the total degree of freedom (d.o.f.) is 21. The red dot represents the best-fit point with

MX ' 95.0GeV, MH2 ' 86.7GeV, h�vi ' 4.0⇥ 10�26cm3/s, (3.3)
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FIG. 3: The regions inside solid(black), dashed(blue) and long-dashed(red) contours correspond
to 1�, 2� and 3�, respectively. The red dots inside 1� contours are the best-fit points. In the
left panel, we vary freely MX , MH2 and h�vi. While in the right panel, we fix the mass of H2,
MH2 ' MX .

Channels Best-fit parameters �
2
min/d.o.f. p-value

XX ! H2H2 MX ' 95.0GeV,MH2 ' 86.7GeV 22.0/21 0.40

(with MH2 6= MX) h�vi ' 4.0⇥ 10�26cm3/s

XX ! H2H2 MX ' 97.1GeV 22.5/22 0.43

(with MH2 = MX) h�vi ' 4.2⇥ 10�26cm3/s

XX ! H1H1 MX ' 125GeV 24.8/22 0.30

(with MH1 = 125GeV) h�vi ' 5.5⇥ 10�26cm3/s

XX ! bb̄ MX ' 49.4GeV 24.4/22 0.34

h�vi ' 1.75⇥ 10�26cm3/s

TABLE I: Summary table for the best fits with three di↵erent assumptions.

dashed(blue) and long-dashed(red) curves, respectively. To compare with bb̄ channel, we
also present 3� region in the right panel of Fig. 4. The best-fit point is around

MX ' 49.4GeV, h�vi ' 1.75⇥ 10�26cm3/s, (3.5)

which gives �2
min ' 24.4 and a p-value, 0.34.

IV. SUMMARY

In the letter, we have explored a possibility that the GeV scale �-ray excess from the
galactic center is due to DM pair annihilation into a pair of dark Higgs, followed by the dark

6

P.Ko, Yong Tang.
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FIG. 2: Three illustrative cases for gamma-ray spectra in contrast with CCW data points [11]. All
masses are in GeV unit and �v with cm3/s. Line shape around E ' MH2/2 is due to decay modes,
H2 ! ��, Z�.

As we can see, di↵erent parameter sets can give di↵erent spectrum shape, especially in
the high energy regime. When the branching ratios of H2 ! ��, Z� are increasing, we can
see the gamma lines more easily around E ' MH2/2. Since the annihilation cross section is
at order of 10�26cm3/s and the branching ratios of H2 ! ��, Z� are around 0.2% at most,
the considered parameters are still consistent with constraint from gamma-line searches.

We now use the �2 function and find its minimum to find out the best fit:

�2 (MX ,MH2 , h�vi) =
X

i,j

(µi � fi)⌃
�1
ij

(µj � fj) , (3.2)

where µi and fi are the predicted and measured fluxes in the i-th energy bin respectively, and
⌃ is the 24⇥24 covariance matrix. We take the numerical values for fi and ⌃ from CCW [11].
Minimizing the �2 against fi with respect to MX , MH2 and h�vi gives the best-fit points,
and then two-dimensional 1�, 2� and 3� contours are defined at ��2

⌘ �2
� �2

min = 2.3,
6.2 and 11.8, respectively.

Fig. 3 is our main result. In the left panel, MX , MH2 and h�vi are freely varied, so that
the total degree of freedom (d.o.f.) is 21. The red dot represents the best-fit point with

MX ' 95.0GeV, MH2 ' 86.7GeV, h�vi ' 4.0⇥ 10�26cm3/s, (3.3)

gives �2
min ' 22.0, with the corresponding p-value equal to 0.40.

We also notice that there are two separate regimes, one in the low mass region and the
other in high mass region. The higher mass region is basically aligned with MH2 ' MX since
otherwise a highly-boosted H2 would give a harder gamma-ray spectrum. In this region,
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FIG. 3: The regions inside solid(black), dashed(blue) and long-dashed(red) contours correspond
to 1�, 2� and 3�, respectively. The red dots inside 1� contours are the best-fit points. In the
left panel, we vary freely MX , MH2 and h�vi. While in the right panel, we fix the mass of H2,
MH2 ' MX .

Channels Best-fit parameters �
2
min/d.o.f. p-value

XX ! H2H2 MX ' 95.0GeV,MH2 ' 86.7GeV 22.0/21 0.40

(with MH2 6= MX) h�vi ' 4.0⇥ 10�26cm3/s

XX ! H2H2 MX ' 97.1GeV 22.5/22 0.43

(with MH2 = MX) h�vi ' 4.2⇥ 10�26cm3/s

XX ! H1H1 MX ' 125GeV 24.8/22 0.30

(with MH1 = 125GeV) h�vi ' 5.5⇥ 10�26cm3/s

XX ! bb̄ MX ' 49.4GeV 24.4/22 0.34

h�vi ' 1.75⇥ 10�26cm3/s

TABLE I: Summary table for the best fits with three di↵erent assumptions.

dashed(blue) and long-dashed(red) curves, respectively. To compare with bb̄ channel, we
also present 3� region in the right panel of Fig. 4. The best-fit point is around

MX ' 49.4GeV, h�vi ' 1.75⇥ 10�26cm3/s, (3.5)

which gives �2
min ' 24.4 and a p-value, 0.34.

IV. SUMMARY

In the letter, we have explored a possibility that the GeV scale �-ray excess from the
galactic center is due to DM pair annihilation into a pair of dark Higgs, followed by the dark
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This explanation is possible only in DM models 
with dark gauge symmetry



Collider Implications
mh = 125GeV, Br(H ! inv) < 0.51 at 90% CL
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2 more relevant parameters 

5

nal strength ∼ 1, the other ons has the signal strength
! 0.1. Therefore it would require dedicated searches for
this singlet-like scalar boson at the LHC. In fact this sec-
ond scalar boson is almost ubiquitous in hidden sector
DM models, where DM is stabilized or long-lived due
to dark gauge symmetries [17–23]. In case this second
scalar is light, it could solve some puzzles in the CDM
paradigm, such as core cusp problem, missing satellite
problem or too-big-to-fail problem [22, 23]. And it
can help the Higgs inflation work [24] in light of the
recent BICEP2 results with large tensor-to-scalar ratio
r = 0.2+0.07

−0.05. Therefore it would be very important to
search for the singlet-like second scalar boson at the LHC
and elsewhere, in order to test the idea of dark gauge
symmetry stabilizing the DM of the universe. Since the
ILC can probe α down to a few ×10−3 only, there would
be an ample room for the 2nd scalar remaining undis-
covered at colliders unfortunately. It would be a tough
question how to probe the region below α ! 10−3 in the
future terrestrial experiments ( for example, see [25] for
a recent study).
The second point is that there is no unique correlation

between the LHC data on the Higgs invisible branch-
ing ratio and the spin-independent cross section of Higgs
portal DM on nucleon. One can not say that the former
gives stronger bound for low DM mass region compared
with the latter, which is very clear from the plots we have
shown. Therefore it is important for the direct detection
experiments to improve the upper bound on σSI for low
mDM, regardless of collider bounds. Collider bounds can
never replace the DM direct search bounds in a model
independent way, unlike many such claims.

CONCLUSION

In this letter, we have demonstrated that the effec-
tive theory approach in dark matter physics could lead
to erroneous or misleading results. For the Higgs portal
SFDM and VDM, there are at least two more impor-
tant parameters, the mass m2 of the 2nd scalar which is
mostly a SM singlet, and the mixing angle α between the
SM Higgs boson and the 2nd scalar boson:

σSI
p = (σSI

p )EFT c4αm
4
hF(mDM, {mi}, v) (27)

≃ (σSI
p )EFT c4α

(

1−
m2

h

m2
2

)2

(28)

where the function F is defined in Eq. (13) and m1 =
mh = 125 GeV. The second equation is obtained when
the momentum of DM is negligible relative to both
masses of Higgses. The usual EFT approach applies only
for the case m2 = mhcα/

√

1 + c2α or m2 → ∞ with
α → 0. For the finite m2, there is a generic cancel-
lation between H1 and H2 contribution due to the or-
thogonal nature of the rotation matrix from interaction

to mass eigenstates of two scalar bosons. The resulting
bound on σSI becomes even stronger if m2 > m1 = 125
GeV. On the other hand, for a light 2nd Higgs (m2 <
mhcα/

√

1 + c2α), the LHC bound derived from the invis-
ible Higgs decay width is weaker than the claims made
in both ATLAS and CMS collaborations. Especially, for
m2 ! mhcα/

√

12.3 + c2α, it can not compete with the
DM direct search bounds from XENON100, CDMS and
LUX, which is the main conclusion of this paper. Both
LHC search for the singlet-like 2nd scalar boson and the
DM direct search experiments are important to be con-
tinued, and will be complementary with each other.
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Invisible H decay into 
a pair of  VDM 

4

LVDM = −
1

4
VµνV

µν +DµΦ
†DµΦ− λΦ

(

Φ†Φ−
v2Φ
2

)2

− λΦH

(

Φ†Φ−
v2Φ
2

)(

H†H −
v2H
2

)

(21)

where Φ is the dark Higgs field which generates nonzero
mass for the VDM through spontaneous U(1)X breaking,
and

DµΦ ≡ (∂µ + igXQΦVµ)Φ

After U(1)X breaking, we shift the field ΦX as follows:

Φ →
1√
2
(vΦ + φ(x))

where the field φ(x) is a SM singlet scalar similarly to
the singlet scalar in the SFDM case. Again there are two
scalar bosons which are mixtures of h and φ.
The invisible and non-SM branching fractions of the

Higgs decay are of the same forms as Eqs. (5) and (6),
but with

Γinv
i =

g2X
32π

m3
i

m2
V

(

1−
4m2

V

m2
i

+ 12
m4

V

m4
i

)(

1−
4m2

V

m2
i

)1/2

(22)
where mV is the mass of VDM, and Γjj

i with µ′
P = 0.

The spin-indenpendent cross section of VDM to proton is
also same as the one of Eq. (7) with λψ and mψ replaced
to gX and mV , respectively.
Again, let us compare these results with those in the

EFT:
(

Binv
h

)

EFT
is of the same form as Eq. (15) with

(Γinv
h )EFT =

λ2V H

128π

v2Hm3
h

m4
V

×

(

1−
4m2

V

m2
h

+ 12
m4

V

m4
h

)(

1−
4m2

V

m2
h

)1/2

(23)

and the VDM-nucleon scattering cross section is

(σSI
p )EFT =

m2
r

π

[

λV H mp

2mV m2
h

]2

f2
p (24)

In the renormalizable model of Eq. (21), the LHC bound
on Binv

h can be translated directly to a constraint on σSI
p

by the relation,

σSI
p = c4αm

4
hF(mV , {mi}, v)

×
Binv

h ΓSM
h

(

1−Binv
h

)

32m2
rm

2
V (mp/vH)2 f2

p

m7
hβV

(

1− 4m2

V

m2

h

+ 12
m4

V

m4

h

) (25)

where βV =
√

1− 4m2
V /m

2
h. On the other hand, in the

EFT of Eq. (3) one finds

(

σSI
p

)

EFT
=

Binv
h ΓSM

h

1−Binv
h

32m2
rm

2
V (mp/vH)2 f2
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) (26)
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FIG. 2: σSI
p as a function of the mass of dark matter for SVDM

for a mixing angle α = 0.2. Same color and line scheme as
Fig. 1.

used in the analysis’s of ATLAS [1] and CMS [2]. Note
again that σSI

p of Eq. (25) has additional factors involving

(α, m2), compared to
(

σSI
p

)

EFT
of Eq. (26). Therefore,

similarly to the case of SFDM, one cannot make model-
independent connections between Binv

h and σSI
p in the

Higgs portal VDM model. Fig. 2, where σSI
p of Eq. (25)

and (σSI
p )EFT of Eq. (26) in VDM scenario are depicted

for comparison, shows clearly this discrepancy caused by
the different dependence on α and m2.

IMPLICATIONS FOR DM SEARCH AND

COLLIDER EXPERIMENTS

From our arguments based on the renormalizable and
unitary model Lagrangians, it is clear that one has to
seek for the singlet-like second scalar boson H2. It could
be either lighter or heavier than the observed Higgs bo-
son. Since the observed 125 GeV Higgs boson has a sig-
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Invisible H decay width : finite for small mV 
in unitary/renormalizable model

NB: it is infinite in the effective VDM model
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I. INVISIBLE DECAY WIDTH OF THE HIGGS BOSON

A. Renormalizable and gauge invariant theory

�
inv
i

=
g2
X

32⇡

m3
i

m2
V

✓
1� 4m2

V

m2
i

+ 12
m4

V

m4
i

◆✓
1� 4m2

V

m2
i

◆1/2

(1)

Here mV / gxQ�v� [defined in the covariant derivative of � below Eq. (21).] Now we are

interested in the limit mV ! 0, but mV 6= 0. This limit can be achieved by taking gX ! 0

with a fixed v�. Then the prefactor in Eq. (2),
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B. EFT prediction
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In this case there is no definite correlation between mV and �V H so that the invisible decay

width grows indefinitely when mV ! 0, unlike the case of Eq. (1). This is the well known

disaster in the Higgs portal VDM in the EFT approach.
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3 The interference e↵ect between two scalar mediators at LHC

In the singlet fermion DM models with Higgs portal described in the previous section, the

DM production is dominated by three processes as shown in Fig. 1: i.e. gluon-gluon fusion

(ggF), vector boson fusion (VBF) and Higgs Strahlung (VH).
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Figure 1: The dominant DM production processes at LHC.

In contrast to the simplified scalar mediated DM model recommended by the LHC

Dark Matter Forum [11], there are two propagators (H1 and H2) that can mediate the DM

pair production in the gauge invariant model descried in the previous section. Note that

the Lagrangian in Eq. (2.4) resembles the singlet scalar mediated DM model in Ref. [11]

when only fermionic couplings of H2 are concerned.

The interference between two propagators in the di↵erential production cross sections

of the DM pair takes the following form:

d�i
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m2
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+ imH1�H1
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m2
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H2
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where �i corresponds to the cross section of di↵erent production mechanism and m�� is

the invariant mass of DM pair. The minus sign between two propagators comes from the

SO(2) nature of the mixing matrix in Eq. (2.3), which is found is be helpful to evade the

DM direct detection [19, 35] in such class of models. The interference e↵ect will not only

influence the total production rate of DM pair, but also changes the shape of kinematic

variables.

To give more concrete examples on the interference e↵ect, a few assumptions are made

to narrow down the parameter space. We will fix sin↵ = 0.2 and g� = 1 in our following

discussion. Because the di↵erential cross section are universally proportional to g� sin 2↵

as shown in Eq. (3.1), changing the sin↵ and g� will simply rescale the di↵erential cross

section as long as the �Hi does not di↵er much. The scalar H1 is identified as the 125

GeV Higgs boson with properties that are consistent with the LHC discovery, so that

mH1 = 125 GeV and �H1 = cos2 ↵ · �hSM . Models with m� < mhSM/2 will be highly

constrained by the Higgs invisible decay search at LHC. This usually requires very small

g�, e.g. for sin↵ = 0.2, g� should be smaller than . 0.1 in order to satisfy the current

upper bound on the invisible Higgs branching ratio: Br(hSM ! ��)< 0.24 [36]. Then

the DM production cross section should be small in such cases. The same situation exists

when DM is heavy. So we will focus on the scenarios with medium DM mass in this work,
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Interference between 2 scalar bosons could 
be important in certain parameter regions

sin↵ = 0.2, g� = 1,m� = 80GeV



Interference effects

which we choose m� = 80 GeV without lose of generality. Then we are left with two most

relevant parameters: mH2 and �H2 .

The FeynRules [37]/MadGraph5 aMC@NLO [38] framework is used in order to cal-

culate the NLO QCD cross sections and simulate the events. The FeynRules takes the

Lagrangian of the simplified model in Eq. (2.4) as well as the UV/R2 counterterms for the

NLO QCD computations from NLOCT [39]/FeynArts [40] to generate the Universal Feyn-

Rules Output model files. The MadGraph5 aMC@NLO uses the model files to compute

the tree-level and loop-level amplitudes for any processes of the model.

We calculate the Leading-Order (LO) cross section of the gluon-gluon fusion DM pair

production by using the loop induced mode [41] of MadGraph5 aMC@NLO. The results

for varying mH2 and �H2 are shown in Fig. 2.
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Figure 2: The LO cross section for gluon-gluon fusion process at 13 TeV LHC. The

meanings of the di↵erent line types are explained in the text and the similar strategy will

be used in all figures.

In the figure, the �min forH2 is calculated by assumingH2 decays only into SM particles

and DM pair through the interactions given in Eq. (2.4), where we have set sin↵ = 0.2 and

g� = 1. Note that the actual H2 decay width could be larger than �min, if H2 ! H1H1

is open and non negligible, or if there are other decay channels of H2. For example, there

could be extra dark sector particles such as dark Higgs or dark gauge bosons if Z2 symmetry

is replaced by dark gauge symmetry (see Refs. [42, 43] for example). These extra channels

are more model dependent though. Therefore we consider three di↵erent widths of H2

throughout the work: �min, 5 ⇥ �min and 20 ⇥ �min, respectively. The lines associate to

H1&H2 and H2 are calculated with and without the H1 as the mediator respectively. The

former case corresponds to the the gauge invariant singlet fermion DM models with Higgs

portal, while the later case corresponds to the usual singlet scalar portal DM model as

proposed in Ref. [11] and widely used in literature.

From Fig. 2, we can observe that including theH1 will substantially reduce the DM pair

– 5 –



3

The 1/s suppressions from the s-channel resonance prop-
agators make the amplitude unitary, in compliance with
renormalizable and unitary QFT.
Finally let us discuss the indirect detection signatures

or thermal relic density from the full theory. In this case

we can assume the same amplitude (7), with approxima-
tion s ≈ (2mχ)2, and we can identify the scale for the
effective operator (1) as

| 1
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The last equation is obtained in the limit mH2 → ∞.
Again, due to its dependence on the DM mass mχ, the
scale Λann has nothing to do with the scale in the effective
operator for the direct detection, Λdd, Eq. (6).

COLLIDER STUDIES

To study the effect of nontrivial propagator of media-
tors, we consider following four cases between a standard
model sector and dark matter.

• EFT : Effective operator Lint =
mq

Λ3
dd
q̄qχ̄χ

• S.M.: Simple scalar mediator S of

Lint =
(

mq

vH
sinα

)
Sq̄q − λs cosαSχ̄χ

• H.M.: A case where a Higgs is a mediator

Lint = −
(

mq

vH
cosα

)
Hq̄q − λs sinαHχ̄χ

• H.P.: Higgs portal model as in eq. (2).

In S.M. and H.M. cases, we can regard α as a suppression
factor in interactions while H.P. case, it is a mixing angle
between H and a singlet scalar S. The kinematics of a
signature, i.e., a hardness of ISR jets, /ET , depend on the
scale of a hard interaction, which is proportional to the

invariant mass of a dark matter pair mχ̄χ. Thus there are
relations among EFT, S.M. H.M. and H.P as following,

H.P. −→
m2→∞

H.M. (11)

S.M. −→
m2→∞

EFF. (12)

Thus, an effective operator approach can not capture the
feature of an actual dark matter model, here a higgs
portal. To illustrate this point with Monte Carlo sim-
ulations, we follow ATLAS mono-jet and CMS tt̄ + /ET

searches [2, 3] in followings.
Monojet + E̸T signatures

In this section, we discuss the monojet +
E̸T signatures within the DM EFT and within the
full renormalizable theory. The scale in the full the-
ory for direct detection Λdd and Λ̄dd in the limit of
mH2 ≫ mH1 are defined as

Λ3
dd ≡

2vHm2
H1

m2
H2

λ sin 2α(m2
H2

−m2
H1

)
(13)

Λ̄3
dd ≡

2vHm2
H1

λ sin 2α
(14)

The applied cuts are as follows:

pjetT > 100GeV, |ηjet| < 2.4.

tt̄ + E̸T signatures

In this section, we discuss the tt̄ + E̸T signatures
within the DM EFT and within the full renormaliz-

able theory. Again one has to include the form factor,

5

TeV, and between S.M. with mS = 1 TeV and H.P. with
mH2 = 1 TeV, respectively.

Final search results will also depend on the production
cross section which depends on propagators of media-
tors. In Fig. 2, we illustrate the cross sections rescaled
by the dimensionless factor (2/�S sin 2↵)2 and the e�-
ciency ✏SR7 in the signal region SR7 (/ET > 500 GeV) at
ATLAS [11]. The rescaled cross sections are apparently
independent of the mixing angle ↵. The figure clearly
shows that the Higgs portal model cannot be described
by either the EFT or the S.M at all. Also in the limit
that mH2(mS) is much larger than the typical scale in
the process, the S.M approaches the EFT, whereas the
H.P. does the H.M., respectively.
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FIG. 2: Rescaled cross sections for the monojet+/ET in the
signal region SR7 (/ET > 500GeV) at ATLAS [11]. Each line
corresponds to the EFT approach (magenta), S.M. (blue),
H.M. (black), and H.P. (red), respectively. The solid and
dashed lines correspond to m� = 50 GeV and 400 GeV in
each model, respectively.

3.2 tt̄ + 6ET signatures: A (e↵ective) scalar operator
in Eq. (1) from the Higgs portal case is proportional to
the mass of quarks. Thus dark matter creations with top
quark pair will have better sensitivities compared to the
usual monojet search [18, 19]. Following the analysis of
CMS tt̄ + /ET search [12], we find similar features in the
monojet search in the previous section. The detail of this
analysis will be presented in the future publication [20],
but we will show the resulting bound on M⇤ in Fig. 3
(the lower pannel) in the following subsection.

3.3 Relation between a mediator and an e↵ective oper-
ator approach: By direct comparison between scattering
matrix elements from an e↵ective operator and from a
simple scalar mediator, we can have a similar relation to
Eq. (9)

M
3

⇤ =

✓
2vH

� sin 2↵

◆
m

2

S
. (16)

With this relation, the ATLAS collaboration showed that
the validity of the e↵ective operator when mS > 5 TeV
[11]. However as shown in Eq. (12), this validity holds

only for the S.M which does not respect the full SM gauge
symmetry, while the H.P. with the full SM gauge sym-
metry does not approach the EFT result.
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FIG. 3: The experimental bounds on M⇤ at 90% C.L. as a
function of mH2 (mS in S.M. case) in the monojet+/ET search
(upper) and tt̄ + /ET search (lower). Each line corresponds
to the EFT approach (magenta), S.M. (blue), H.M. (black),
and H.P. (red), respectively. The bound of S.M., H.M., and
H.P., are expressed in terms of the e↵ective mass M⇤ through
the Eq.(16)-(20). The solid and dashed lines correspond to
m� = 50 GeV and 400 GeV in each model, respectively.

In Fig. 3, we show that the experimental 90%
C.L. limits on the suppression scale M⇤ as a function of
a mediator mass mH2 (mS in the S.M. case) at the LHC
by using the results in the monojet+/ET search (upper)
at ATLAS [11] and in the tt̄+ /ET search (lower) at CMS
[12]. For the translation from the limit on the mass of
a mediator in a specific model to a limit on the M⇤ in
the e↵ective operator, we use a direct comparison be-
tween parameters in a model and an suppression scale
M⇤ in the limit where a collision energy becomes negli-
gible compared to the mediator’s mass. For S.M. case we
use the following relation

mq

M3
⇤

=
mq� sin ↵ cos ↵

vH

1

m
2

S

(17)

so that a limit on M⇤ can be obtained through a trans-
lation

"✓
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⇤

◆2 ✓
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2vHm
2

S

◆�2

�(S.M.)

#
⇥✏(S.M.) =

Nobs

L . (18)

3

1

⇤3

dd

! 1

⇤̄3

dd


m

2

H1
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2

H1
+ imH1�H1

�
m

2

H1

ŝ � m
2

H2
+ imH2�H2

�
⌘ 1

⇤3

col
(ŝ)

, (10)

where ŝ ⌘ M
2

��
is the square of the invariant mass of the

DM pair. Note that ŝ � 4m
2

�
in the physical region for

DM pair creation, and that there is no single constant
scale ⇤col for an e↵ective operator that characterizes the
qq̄ ! ��̄, since ŝ varies in the range of 4m

2

�
 ŝ  s

with
p

s being the center-of-mass (CM) energy of the
collider. Also note that we have to include two scalar
propagators with opposite sign in order to respect the
full SM gauge symmetry and renormalizability. This is
in sharp contrast with other previous studies where only
a single propagator is introduced to replace 1/⇤2. The
two propagators interfere destructively for very high ŝ

or small t (direct detection), but for m
2

H1
< ŝ < m

2

H2
,

they interfere constructively. The 1/s suppressions from
the s-channel resonance propagators make the amplitude
unitary, in compliance with renormalizable and unitary
QFT.

If one can fix ŝ and m
2

H2
� ŝ, we can ignore the 2nd

propagator. But at hadron colliders, ŝ is not fixed, except
for the kinematic condition 4m

2

�
 ŝ  s (with s =

14TeV for example at the LHC@14TeV). Therefore we
cannot say clearly when we can ignore ŝ compared with
m

2

H2
at hadron colliders, unless m

2

H2
> s (not ŝ).

3. Collider Studies: There are two important factors
in the search for new physics at colliders: a total cross
section and the shape of di↵erential cross sections with
respect to various analysis “cut” variables. A mixing an-
gle ↵ between two scalars is related only to a total cross
section, not to the shape of di↵erential cross section. The
shape of di↵erential cross sections and e�ciencies from
various analysis cuts are related to the nontrivial propa-
gators coming from two mediators (H1, H2). Thus we can
single out the e↵ect of a mixing angle from collider anal-
yses when we try to understand whether we can recast
results of various analyses based on the e↵ective opera-
tor and a simplified model to our model here, the Higgs
portal case through the following set up:

• EFT : E↵ective operator Lint = mq

M3
⇤
q̄q�̄� defined

in Eq. (1)

• S.M.: Simplified model with a scalar mediator S

[3],

Lint =
⇣

mq

vH

sin ↵

⌘
sq̄q � �s�̄� cos ↵

• H.M.: A Higgs boson as a mediator,

Lint = �
⇣

mq

vH

cos ↵

⌘
hq̄q � �h�̄� sin ↵

• H.P.: Higgs portal model defined in Eq. (4) or (5).

In the S.M. and H.M. cases, we can regard ↵ as a sup-
pression factor in interactions while in the H.P. case, it
is a mixing angle between h and s. Note that the SM
gauge symmetry is not fully respected within EFT, S.M.
and H.M. cases.

The kinematics of a signature, i.e., PT of an initial
state radiation (ISR) jet and the size of /ET , depend on
the scale of a hard interaction, which is proportional to
the invariant mass of a dark matter pair, M��. With
following LHC studies, we show that there are relations
among EFT, S.M., H.M., and H.P:

H.P. �!
m

2
H2

�ŝ

H.M., (11)

S.M. �!
m

2
S

�ŝ

EFT, (12)

H.M. 6= EFT . (13)

In H.P., the limit m
2

H2
� ŝ can be achieved, for exam-

ple, by taking vS (the VEV of S in Eq. (4)) large while
keeping dimensionless couplings perturbative. The mix-
ing angle in this case is approximated to [6]

tan 2↵ ' 2vH (µHS
+ �HSvS)

2�Sv
2

S

. (14)

The perturbativity of e↵ective couplings obtained after
integrating out the heavy scalar particle (H2) requires
µHS + �HSvS . mH2 , constraining the mixing angle to
be upper-bounded as

↵ . 2

r
⇡

3

vH

mH2

. (15)

Hence, as H2 becomes heavier, impacts of H.P. at col-
lider experiments becomes more elusive. In any case, for
m

2

H2
� ŝ, the e↵ect of the heavy scalar propagator can be

ignored in relevant diagrams for collider searches. Then,
it is clear that H.P. reduces to H.M. with the angle ↵

given by Eq. (14), and this is what Eq. (11) means. On
the other hand, it should be clear that, S.M. is reduced
to EFT for m

2

S
� ŝ, as stated in Eq. (12), since there

is only one scalar mediator which can be very heavy in
S.M. [26]. Also, it should be clear that, since the mass of
SM-like Higgs is fixed, H.M. cannot be reduced to EFT
for m

2

h
. ŝ, as stated in Eq.(13).

Thus, an e↵ective operator approach cannot capture
the feature of an actual dark matter model, as shown
here in the context of the Higgs portal singlet fermion
DM as an example. We illustrate our point with the AT-
LAS monojet and the CMS tt̄ + /ET searches [11, 12].


