FREEZE-IN OF LIGHT SCALARS

-Saniya Heeba (RWTH Aachen)

Based on: **SH**, Felix Kahlhöfer, Patrick Stöcker, **1809.09849**

FREEZE-IN BASICS:

DM ABUNDANCE CALCULATED BY:

$$1 \rightarrow 2: \qquad \frac{\mathrm{d}Y_{\chi}}{\mathrm{d}x} = 2 \frac{\Gamma_{B \to \chi\chi}}{Hx} \frac{K_1(x)}{K_2(x)} Y_B^{\mathrm{eq.}}$$

$$\frac{dY_{\chi}}{dx} = C_{ab} \frac{s}{Hx} \langle \sigma v \rangle Y_{ab, eq.}^2$$

(Bernal et al.: 1706.07442)

THE MODEL

MODEL PARAMETERS:

$$\mathcal{L} = \mathcal{L}_{kin.} + \frac{1}{2}\mu_s^2(v_s + s)^2 - \frac{\lambda_s}{4}(v_s + s)^4 - \frac{\lambda_{hs}}{2}(v_s + s)^2 |\Phi|^2$$

MODEL PARAMETERS:

$$\mathscr{L} = \mathscr{L}_{kin.} + \frac{1}{2}\mu_s^2(v_s + s)^2 - \frac{\lambda_s}{4}(v_s + s)^4 - \frac{\lambda_{hs}}{2}(v_s + s)^2 |\Phi|^2$$

- No $\mathbb{Z}_2 \Rightarrow$ scalar is unstable but cosmologically viable for small λ_{hs} and $m_s \sim \text{keV} \text{MeV}$.
- Parameters to keep in mind:
 - $\blacktriangleright \text{ Mass: } m_s = \sqrt{2 \, \lambda_s} v_s$
 - Mixing: λ_{hs} , determines freeze-in abundance.
 - Self-coupling: λ_s , determines scalar self-interactions and phenomenology after freeze-in.

WHEN SYMMETRIES (AND CALCULATIONS) BREAK DOWN...

Phenomenology different before and after Electroweak Phase Transition (EWPT).

$$\mathcal{L} \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$

WHEN SYMMETRIES (AND CALCULATIONS) BREAK DOWN...

Phenomenology different before and after Electroweak Phase Transition (EWPT).

$$\mathcal{Z} \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$
 Before EWPT

- ightharpoonup No mixing between s and H
- No coupling to SM fermions

Note: At $T \gtrsim T_{\rm EW}$, temperature corrections to the Higgs mass are important!

WHEN SYMMETRIES (AND CALCULATIONS) BREAK DOWN...

Phenomenology different before and after Electroweak Phase Transition (EWPT).

$$\mathcal{L} \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$

Before EWPT

After EWPT

$$\mathcal{L} \supset -\lambda_{hs} v_s v_s h$$

- ightharpoonup No mixing between s and H
- No coupling to SM fermions

- Mixing determined by θ
- Coupling to SM fermions

Note: At $T \gtrsim T_{\rm EW}$, temperature corrections to the Higgs mass are important!

$$\theta \approx \frac{\lambda_{hs} \, v_s \, v}{m_h^2 - m_s^2}$$

THE FIVE STAGES OF FREEZE-IN

STAGE I: PRODUCTION BEFORE EWSB

$$\mathcal{L}_s \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$

Main production channel:

STAGE I: PRODUCTION BEFORE EWSB

$$\mathcal{L}_s \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$

Main production channel:

STAGE I: PRODUCTION BEFORE EWSB

$$\mathcal{L}_s \supset -\frac{\lambda_{hs}}{2} (v_s + s)^2 |\Phi|^2$$

Main production channel:

DM abundance before EWPT:

$$Y_{s,1} \approx (7.22 \times 10^9) \,\lambda_{hs}^2$$

STAGE II: PRODUCTION DURING* EWPT

$$\theta(T) \approx \frac{\lambda_{hs} v_s v}{m_h(T)^2 - m_s^2}$$

STAGE II: PRODUCTION DURING* EWPT

$$\theta(T) \approx \frac{\lambda_{hs} v_s v}{m_h(T)^2 - m_s^2}$$

- For $m_h(T) \sim m_s$, θ is enhanced
- Higgs can oscillate into scalar. (Redondo & Postma, 0811.0326)
- Rate of conversion depends on:

STAGE II: PRODUCTION DURING* EWPT

$$\theta(T) \approx \frac{\lambda_{hs} v_s v}{m_h(T)^2 - m_s^2}$$

- For $m_h(T) \sim m_s$, θ is enhanced
- Higgs can oscillate into scalar. (Redondo & Postma, 0811.0326)
- Rate of conversion depends on:

DM abundance during EWPT:

$$Y_{s,2} \approx (3 \times 10^5 \,\text{GeV}^{-4}) \,\lambda_{hs}^2 \, m_s^2 \, v_s^2$$

+ many more!

Possible to divide the parameter space in two parts based on how the different cross-sections scale with the scalar vev

Dominant channel when $v_s \leq 100 \, \mathrm{GeV}$

Possible to divide the parameter space in two parts based on how the different cross-sections scale with the scalar vev

Dominant channel when $v_s \le 100 \, \text{GeV}$

Dominant channels when $v_s \ge 100 \, \mathrm{GeV}$

Possible to divide the parameter space in two parts based on how the different cross-sections scale with the scalar vev

$$Y_{s,3}^{\text{decay}} \approx (2.2 \times 10^{12}) \lambda_{hs}^2$$

$$Y_{s,3}^{2\to2} \approx (1.7 \times 10^8 \,\text{GeV}^{-2}) \,\lambda_{hs}^2 \,v_s^2$$

UNTIL NOW:

STAGE IV: DARK SECTOR THERMALISATION

- Does the DM comoving number density remain constant after freeze-in?
 - λ_s induces self-interactions! (Kinetic equilibrium)
 - Absence of \mathbb{Z}_2 symmetry implies $2 \to 3$ and $3 \to 2$ processes allowed. (Chemical equilibrium?)

Do these interactions always thermalise the dark sector?

STAGE IV: DARK SECTOR THERMALISATION

The presence of number changing processes implies that the DM number density can change after freeze-in has ended.

If DM in chemical equilibrium:

BREEDING

 $2 \rightarrow 3$ processes populate the dark sector

If DM in chemical equilibrium:

BREEDING

 $2 \rightarrow 3$ processes populate the dark sector

COHABITATION

 $2 \rightarrow 3$ and $3 \rightarrow 2$ processes equally efficient

If DM in chemical equilibrium:

BREEDING

 $2 \rightarrow 3$ processes populate the dark sector

COHABITATION

 $2 \rightarrow 3$ and $3 \rightarrow 2$ processes equally efficient

CANNIBALISM

 $3 \rightarrow 2$ processes increase dark sector temperature

<u>If DM in chemical equilibrium:</u>

BREEDING

 $2 \rightarrow 3$ processes populate the dark sector

COHABITATION

 $2 \rightarrow 3$ and $3 \rightarrow 2$ processes equally efficient

CANNIBALISM

 $3 \rightarrow 2$ processes increase dark sector temperature

FREEZE-OUT

TO INCREASE THE

GRADUALLY ...

TEMPERATURE

THE BIG PICTURE:

CONSTRAINTS

More details: 1809.09849!

DECAYS:

- 1 keV $< m_s < 100 \, \mathrm{MeV}$, relevant decay modes $s \to \gamma \gamma$ or $s \to e^+ e^-$.
- ▶ To satisfy CMB constraints, $m_s < 1 \,\mathrm{MeV}$
- $s \rightarrow \gamma \gamma$ gives a striking search signature: mono energetic photon line.

More details: 1809.09849!

DECAYS:

- 1 keV $< m_s < 100 \, \mathrm{MeV}$, relevant decay modes $s \to \gamma \gamma$ or $s \to e^+ e^-$.
- ▶ To satisfy CMB constraints, $m_s < 1 \,\mathrm{MeV}$
- $s \rightarrow \gamma \gamma$ gives a striking search signature: mono energetic photon line.

ASTROPHYSICAL CONSTRAINTS:

- Self-interactions: $\frac{\sigma_s}{m_s} = \frac{9\lambda_s^2}{32\pi m_s^3}$
- Bullet cluster: $\sigma/m \lesssim 1 \text{ cm}^2/\text{g}$

More details: 1809.09849!

DECAYS:

- 1 keV $< m_s < 100 \, \mathrm{MeV}$, relevant decay modes $s \to \gamma \gamma$ or $s \to e^+ e^-$.
- ▶ To satisfy CMB constraints, $m_s < 1 \,\mathrm{MeV}$
- $s \rightarrow \gamma \gamma$ gives a striking search signature: mono energetic photon line.

ASTROPHYSICAL CONSTRAINTS:

- Self-interactions: $\frac{\sigma_s}{m_s} = \frac{9\lambda_s^2}{32\pi m_s^3}$
- Bullet cluster: $\sigma/m \lesssim 1 \text{ cm}^2/\text{g}$

More details: 1809.09849!

We can accommodate the 3.5 keV line and have sizeable dark-matter self-interactions!

APPENDIX

TEMPERATURE CORRECTIONS TO THE HIGGS MASS:

Finite-temperature corrections to the Higgs potential:

$$V(\phi, T) = D(T^2 - T_{\text{EW}}^2) \phi^2 + \frac{\lambda(T)^4}{4} \phi^4$$

For
$$T > T_{\text{EW}}$$
:

$$m_H(T)^2 = D(T^2 - T_{\rm EW}^2)$$

For
$$T < T_{\text{EW}}$$

$$m_h(T)^2 = 2 \lambda(T) v(T)^2$$

$$= 4D(T_{\text{EW}}^2 - T^2)$$

LAGRANGIAN AFTER PHASE TRANSITION:

General:
$$\mathscr{L} \supset \frac{1}{2} \mu_s^2 (v_s + s)^2 - \frac{\lambda_s}{4} (v_s + s)^4 - \frac{\lambda_{hs}}{2} (v_s + s)^2 \frac{(v + h)^2}{2}$$

Mixing!

$$\supset -\lambda_{hs} v_s v_s h$$

$$\begin{pmatrix} s' \\ h' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} s \\ h \end{pmatrix} \qquad \theta \approx \frac{\lambda_{hs} v_s v}{m_h^2 - m_s^2}$$

Due to feeble coupling, $s' \equiv s$ we can use: $h' \equiv h$

10¹

PHENOMENOLOGY: TOTAL ABUNDANCE

- ▶ Small $\lambda_s \Rightarrow 2 \leftrightarrow 3$ processes inefficient, relic abundance set by freezein
- Increasing $\lambda_s \Rightarrow 2 \leftrightarrow 3$ processes efficient, relic abundance set by dark sector freeze-out

DARK MATTER SELF-INTERACTIONS:

$$\Rightarrow \frac{\sigma_{SI}}{m_s} = \frac{9 \lambda_s^2}{32\pi m_s^3}$$

$$\Rightarrow \lambda_s \lesssim 0.007 \left(\frac{m_s}{1 \text{ MeV}}\right)^{3/2}$$

Structure formation?

Diffusion length: determines length scales over which energy transfer is efficient.

$$l_s^2 \approx \int_0^a NR \frac{\mathrm{d}a}{H \, a^3 \, n_s \, \langle \sigma v \rangle}$$

Matter power spectrum remains unaffected on visible scales for $\lambda_s > 10^{-10}$.

$$l_s \approx \frac{10^{-11} \,\mathrm{Mpc}}{\lambda_s}$$