Spectroscopy

CP violation

Heavy ions

Upgrade

LHCb status report

Émilie Maurice on behalf of the LHCb collaboration

137th LHCC open session, CERN

February 27^{th} , 2019

Operations	Spectroscopy	CP violation	Heavy ions	Upgrade
Outline				

- $\hfill\square$ End of heavy ion run
- $\hfill\square$ Computing activities

Physics

A selection of new published or preliminary results since last LHCC

- Spectroscopy
- \Box CP violation
- □ Heavy ion physics

Upgrade

- □ Subdetector upgrade
- □ Infrastructure activities
- Commissioning

Spectroscopy

CP violation

Upgrade

End of 2018 ion run: PbPb collisions at $\sqrt{s_{\rm NN}}=5~{\rm TeV}$

Thanks to the LHC for this successful ion run !

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2018

Analysis of 2018 PbPb dataset has started

Émilie Maurice (LAL, LLR)

Operations Spectroscopy CP violation Heavy ions Upgrade

End of 2018 ion run: PbNe collisions at $\sqrt{\textit{s}_{\rm NN}}=69~\text{GeV}$

Simultaneously to PbPb, LHCb collected PbNe collisions thanks to the unique LHC fixed target

Largest sample of Pb-induced reactions in fixed target configuration

- Same energy as 2017 *p*Ne sample
- Data available, already in use

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2018

First heavy flavor signal in Pb-induced collisions in LHC fixed-target configuration Émilie Maurice (LAL, LLR) LHCb status report

Computing activities

Since the start of LHCb, $\mathcal{L}_{pp} \sim 9 \text{ fb}^{-1}$ collected Thanks to the real-time alignment and calibration \rightarrow No need for a reprocessing

Full run 2 sample available and already in use

Optimal use of the resources

- MC productions are using \sim 90 % of the computing power
- Using the online farm for MC production: $\sim 40\%$ of the sample
- Signal MC with 2017 and 2018 conditions available
- Fast simulation

A palette of faster simulation is available, \rightarrow Up to a factor 6 faster than the full simulation Increase the use of faster simulation by the analysts

• Restripping campaign of Run1 and Run2 data ongoing

Physics papers since last LHCC

466 papers in total: 12 papers published since the last LHCC session

Physics papers since last LHCC

Submitted

PAPER-2017-041 Measurement of the ratio of branching fractions of the decays $\Lambda_b^0 \rightarrow \psi(2S)\Lambda$ and $\Lambda_b^0 \rightarrow J/\psi\Lambda$ PAPER-2018-036 Measurement of the branching fraction and *CP* asymmetry in $B^+ \rightarrow J/\psi\rho^+$ PAPER-2018-037 Search for the rare decay $B^+ \rightarrow \mu^+ \mu^- \mu^+ \nu_{\mu}$ PAPER-2018-039 Dalitz Plot analysis of the $D^+ \rightarrow K^-K^+K^+$ decays PAPER-2018-040 Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$ PAPER-2018-042 Study of the $B^0 \rightarrow \rho(770)^0 K * (892)^0$ decay with an amplitude analysis of $B^0 \rightarrow (pi^+\pi^-)(K^+\pi^-)$ PAPER-2018-043 Model-independent observation of exotic contributions to $B^0 \rightarrow J/\psi K^+\pi^-$ decays PAPER-2018-045 Amplitude analysis of $B_s^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ decays PAPER-2018-046 Observation of $B_{(s)}^0 \rightarrow J/\psi p\bar{p}$ decays and precision measurements of the $B_{(s)}^0$ masses PAPER-2018-047 Measurement of B^+ , B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV PAPER-2018-050 Measurement of *b*-hadron fractions in 13 TeV *pp* collisions

Preliminary

PAPER-2018-049 Measurement of $\psi(2S)$ production cross-sections in proton-proton collisions at $\sqrt{s} = 7$ and 13 TeV PAPER-2018-051 Amplitude analysis of $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$ decays PAPER-2019-003 Measurement of the *CP*-violating phase ϕ_s from $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays in 13 TeV *pp* collisions PAPER-2019-005 Observation of a new charmonium state and study of near-threshold $D\overline{D}$ spectroscopy (to be checked)

Most precise determination of $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \text{ MeV}/c^2$ Measurement of Ξ_b^- production asymmetry consistent with 0

$$\frac{f_{\Xi_b} - \mathcal{B}(\Xi_b^- \to J/\psi\Xi^-)}{f_{\Lambda_b^0} B(\Lambda_b^0 \to J/\psi\Lambda)} = \begin{array}{c} \left(10.8 \pm 0.9 \pm 0.8\right) \times 10^{-2} \text{ at } \sqrt{s} = 7, 8 \text{ TeV} \\ \left(13.1 \pm 1.1 \pm 1.0\right) \times 10^{-2} \text{ at } \sqrt{s} = 13 \text{ TeV} \end{array}$$

Using SU(3) flavor symmetry, fragmentation fractions are extracted $\frac{f_{\Xi_{b}^{-}}}{f_{h_{b}^{0}}} = \frac{(6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} \text{ at } \sqrt{s} = 7, 8 \text{ TeV}}{(8.2 \pm 0.7 \pm 0.6 \pm 2.4) \times 10^{-2} \text{ at } \sqrt{s} = 13 \text{ TeV}}$

 \rightarrow No significant dependence on the center-of-mass energy in the 7 - 13 TeV range

Émilie Maurice (LAL, LLR)

• sPlot technique used to separate ϕ contribution in the K^-K^+ mass region $M_{K^-K^+} < 1.07 \text{ GeV}/c^2$

 \rightarrow Fraction of ϕ contribution $f_{\phi} = (90.0 \pm 2.7)\%$

 \rightarrow Evidence of a non- ϕ contribution (3.5 σ)

 $\frac{\mathcal{B}(\Xi_c^+ \to \rho\phi)}{\mathcal{B}(\Xi_c^+ \to \rho K^- \pi^+)} = (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3}$

First observation of $\Xi_c^+ \to p\phi$ decays with a statistical significance $> 15\,\sigma$

Émilie Maurice (LAL, LLR)

LHCb confirms the discrepancy observed by ATLAS and sets additional constraint

Émilie Maurice (LAL, LLR)

The mass peak is outside this mass range, see it in back up

Émilie Maurice (LAL, LLR)

3.8 3.85 3.9 3.95

4.15 [GeV/c²

4.05

 $m_{\mathrm{D}ar{\mathrm{D}}}$

$$\begin{split} \mathcal{A}_{CP}(D_s^+ \to K_s^0 \pi^+) &= \left(1.3 \pm 1.9 \,(\mathrm{stat}) \pm 0.5 \,(\mathrm{syst})\right) \times 10^{-3} \\ \mathcal{A}_{CP}(D^+ \to K_s^0 K^+) &= \left(-0.09 \pm 0.65 \,(\mathrm{stat}) \pm 0.48 \,(\mathrm{syst})\right) \times 10^{-3} \\ \mathcal{A}_{CP}(D^+ \to \phi \pi^+) &= \left(0.05 \pm 0.42 \,(\mathrm{stat}) \pm 0.29 \,(\mathrm{syst})\right) \times 10^{-3} \end{split}$$

No evidence of CPV is found

Émilie Maurice (LAL, LLR)

CP-odd fraction > 97%, decay width difference $\Gamma_H - \Gamma_L = -0.050 \pm 0.004 \pm 0.004 \text{ ps}^{-1}$ $\phi_s = -0.057 \pm 0.060 \pm 0.011 \text{ rad}$

Combination with Run-1 results for this channel: $\phi_s = 0.002 \pm 0.044 \pm 0.012$ rad Émilie Maurice (LAL, LLR) LHCb status report

Measurement of B^+, B^0 and Λ^0_b production in pPb

PAPER-2018-048 arXiv:1902.05599

First measurement of beauty-hadron production via exclusive decay channels in nuclear collisions in LHCb kinematic regime $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$

pPh collisions	Decay	<i>p</i> Pb	Pb <i>p</i>
$\mathcal{L} = 12.2 \pm 0.3 \text{ nb}^{-1}, \ 1.5 < y < 3.5$	$B^+ ightarrow \overline{D}^0 \pi^+$	1958 ± 54	1806 ± 55
	$B^+ ightarrow J/\psi K^+$	883 ± 32	907 ± 33
Pbp collisions $2 - 10 \text{ G} + 0.5 + 1 - 1 = 1$	$B^0 ightarrow D^- \pi^+$	1151 ± 38	889 ± 34
$L = 18.0 \pm 0.5$ nb ⁻¹ , $-4.5 < y < -2.5$	$\Lambda^0_b ightarrow \Lambda^+_c \pi^-$	484 ± 24	399 ± 23

Nuclear effects are studied through: double-differential cross-sections (y, p_T), nuclear modification factors and forward-to-backward cross-section ratio

- Significant nuclear suppression at y > 0
- Unique measurement of Λ_b^0 production
- Λ_b^0/B^0 production cross-sections consistent with the pp measurements
- Λ_b^0/B^0 and B^0/B^+ ratios consistent with being independent of y and p_T

\rightarrow Valuable input for future fits of nPDF

Spectroscopy

CP violation

Heavy ions

Upgrade

Projections for LHC future runs

LHCb-CONF-2018-005: LHCb projections for *p*Pb collisions during LHC Runs 3 and 4

Assumptions: $\sqrt{s_{\rm NN}} = 8.8$ TeV, $\mathcal{L}_{pPb} = 500$ nb⁻¹ 3 weeks of *p*Pb collision during Run 3 and 4

Projections based on existing LHCb analyses

Drell-Yan production clean probe of nPDF at small Bjorken-x

 $D^0\overline{D}^0$ correlations: possible modification of parton intrinsic transverse momentum

Nuclear modification of heavy flavor production

LHCb-CONF-2018-006: Prospects for searches for long-lived particles Exploit the excellent triggering, tracking and vertexing capabilities of the upgraded LHCb \rightarrow Competitive upper limits for beyond SM particles with low masses and lifetimes

CP violation

VELO upgrade: pixel silicon detector

15 prototypes fully assembled with preproduction grade

1st production grade delivery in 2 weeks

Tile assembly

Production of sensors/ASICs complete 70% of tiles bump bonded and tested

RF box production

 $250 \mu m$ aluminium box separating the VELO from LHC vacuum 1st pair of boxes complete Production started on 2nd pair Etching validation ongoing

Émilie Maurice (LAL, LLR)

Mechanical construction placement $10 \mu m$

Precision tile

Wire bonding, HV/LV

Flex circuit

/data cable attachment

3 modules successfully operated in SPS testbeam (Oct 2018)

CP violation

Upstream Tracker (UT)

4 planes of Si microstrip detector in a box that opens during access and beam pipe bake-out

Planes constructed with staves

Low mass flex circuits provide electrical connection between dedicated front end ASICs (SALT) and PEPI electronics

Hybrid-sensor modules mounted on both side to achieve full coverage

First results from the new SALT v3 are encouraging

Schedule for UT installation remains very critical

Scintillating Fibre Tracker (SciFi)

Production well advanced

- Module production finished
- SiPM production will finish in March
- Electronics production: Front-end chip produced and tested Front-end boards $\sim 20\%$ produced
- Mechanical components for 1st C-frame ready Assembly will start in week 10

Assembly hall fully prepared

• Installation of first 6 frames in LHCb is foreseen to start in November

Full-size prototype C-frame

- Commissioning of vacuum insulated SiPM cooling (-40 $^{\circ}$)
- Commissioning of readout and experiment controls well advanced

Coldbox mounting started: modules for first frame already finished

Spectroscopy

CP violation

Heavy ions

Upgrade

RICH upgrade

- Production of all electronics components started
- Elementary Cell Quality assurance started
- Quality Assurance of plugin modules started
- First colums at CERN in few weeks
- Commissioning lab in preparation

RICH upgrade on track

Setup for the Quality Assurance of the $\ensuremath{\mathsf{EC}}$

Test racks for the commissioning

Mechanics of a RICH column LHCb status report

Émilie Maurice (LAL, LLR)

20/26

Calorimeter and Muon system upgrade

Calorimeter

- New front-end electronics Prototypes have been tested intensively \rightarrow Production is starting soon Control boards prototypes have been tested \rightarrow Final version reached
- Preparation of the SPD/PS/Lead dismantling, removal of the ECAL/HCAL electronics
- Reconstruction software for the calorimeters objects

Muon system: New detector electronics - read-out at 40 MHz

- nSYNCs, nODE, nSB are under production, first boards delivered
- Tests are ongoing in Cagliari, Roma1, LNF, first results are positive
- First boards at CERN in April to start the tests on the apparatus

Improved shielding in front of M2

- Drawings have been finalized
- Orders are being placed
- All parts are expected at CERN in the next few months

\rightarrow Calorimeter and Muon system upgrade on track

Spectroscopy

CP violation

Heavy ions

Upgrade

Online

The preparation of the online system is progressing according to schedule

First 2 containers of the LHCb data centre installed and ready at IP8

Residual PCIe40 modules problem solved \rightarrow Production started at full steam

Beginning of February, delivery of half of the long distance fibres at IP8

Promising results for the scalability of the dedicated event builder

Upgrade of the fixed-target system: SMOG2

The use of a storage cell will significantly improve the performances of the fixed target

- Increase of the luminosity by up to 2 orders of magnitude
- Potentially allow injection of H₂, D₂, He, N₂, O₂, Ne, Ar, (Kr, Xe)
- New gas feed system, gas density measured with strongly improved precision
- Well defined interaction region upstream the nominal interaction point

Engineering Design Review in Nov 2018

Presented and discussed by **several LHC WGs**: Vacuum, Impedance, MPP, TREx

Status reviews foreseen in 2019 Q1 and Q2 \rightarrow In cooperation with LHC experts during all the way up to installation

Presented at the LHC Machine Committee \rightarrow No showstopper emerged

Expand the physics reach of SMOG paving the way to new and unique measurements Heavy quark and Drell-Yan production, polarization in baryon production, cosmic rays physics → Physics opportunities detailed in CERN-PBC-Notes-2018-007 (LHCb-PUB-2018-015)

Émilie Maurice (LAL, LLR)

CP violation

Heavy ions

Upgrade

Infrastructure activities

December 2018 Activity successfully finished / Activity ongoing

- Dismantling of the LHCb Main Shielding wall
- Removal of BCM/BLS and Herschel
- Velo racks displacement
- Removal of pipes and cables

January 2019

- Dismantling of the beam pipe, removal of Moedal
- RICH2 upstream window protection installation
- Assembly of the OT cage
- Removal of pipes and cables and the IT stations

February 2019

- Removal of the IT stations
- Removal of the RICH1 shielding doors
- Removal of pipes and cables

Next activities: Removal of the OT stations and M1

LHCb LS2 pit activities overall schedule at the EDMS document 1826213 Follow our new activities by watching our weekly video: http://lhcb-media.web.cern.ch/lhcb-media Émilie Maurice (LAL, LLR) LHCb status report

Commissioning activities

Local commissioning activities have started more intensively

- 3 upgrade commissioning meetings
- 2 sub-detectors workshops: UT and VELO
- Experiment Control System, online, monitoring workshops
- SciFi and RICH commissioning setup
- Online "vertical slice" fully in operations

PCIe40 "acceptance" server

Used to test and accept boards after production

PCIe40 vertical slice server fully cabled

- Used 8 pre-production PCIe40
- Synchronous readout with 48 links eachs: \sim 1 Tb/s potential
- Testbench for Event builder
- Continuous integration

Short-term (Q2) goal: readout part of a detector with new electronics

- Working firmware/software with production releases
- New cards and central timing distribution system

Émilie Maurice (LAL, LLR)

Operations	Spectroscopy	CP violation	Heavy ions	Upgrade
Conclusions				

LHCb operations

- 10 years of successful operations including ion runs
- First significant Pb collisions sample with the unique LHC fixed target configuration
- Optimal use of the computing resources

LHCb physics

- 466 papers since 2010
- First result using the full LHCb statistics (9 fb⁻¹) submitted
- New results using Run 2 data and the full LHCb statistics coming in the next weeks

LHCb upgrade

- Dismantling and installation ongoing Follow our weekly video: http://lhcb-media.web.cern.ch/lhcb-media
- Intensive activities: subdetector, online, electronics
- Upgrade of the fixed-target discussed with several LHC WG and LHCC
- LHCb upgrade II: 4th dedicated workshop open to all who are interested

()			+ 1			
\sim	v		-u		э.	

Spectroscopy

CP violation

Heavy ions

Upgrade

Extra slides

About PAPER-2019-005

- $X(3842), \chi_{c2}$ are prompt, while $\psi(3770)$ has a 35% component from *B*-decays
- $D\overline{D}$ purity: ~ 90%
- Resolutions are cross-checked using control channels
- Fit in $D^0\overline{D}^0$ mass near-threshold region, $\chi_{c1}(3872) \rightarrow$ Does not affect $\psi(3770)$ parameters
- Other narrow or wide resonances were added into the fit
 - \rightarrow Non-zero contributions from ψ (4040), ψ (4160), χ_{c0} (3860)
 - \rightarrow Taken into account in the systematic uncertainties

Émilie Maurice (LAL, LLR)

VELO upgrade

Challenges in Run 3

- \blacktriangleright Vertexing, tracking performance with $\sim5\times$ increase in interactions per bunch crossing
- Increased radiation (order of magnitude higher than current doses)

VELO upgrade

- Silicon hydrid pixel
- 52 modules, 2 retractables halves
- 4 silicon sensors per module, 55 μ m \times 55 μ m
- Front-end readout: 3 chips bump-bonded to each sensor
- Sensor and readout electronics mounted on cooling substrat Sensor temperature maintained at -20C, novel technique of evaporated CO₂ cooling in substrate mucro-channels
- Minimal material within acceptance

- 4 layers of silicon strip detector
 - Finer granularity innermost sensors closer to beam pipe
 - Inner layers tilted by a stereo angle
 - 4 different types of sensors
 - Mounted to lightweight staves 10 cm wide, 1.6m long
 - Novel readout chip (SALT ASIC)

Scintillating Fibre Tracker - SciFi

$3\,\times\,4$ layers of scintillating fiber mats

- Each mat with 6 layers of fibres
- 8 mats assembled into a module
- 11,000 km of fibres in total

Coverage up to 3m from the beam pipe Single photon efficiency \sim 99% Fibre readout by silicon photo-multipliers

- 128-channels SiPM arrays, channel size 250 μm
- Cooled to -40C to minimize dark count rate after high irradiation

Photon detection efficiency $\sim 45\%$ SiPM signal processed by custom ASIC chip

RICH upgrade

New glass flat mirrors for RICH1

Focal plane, optics modified to increase size of Cherenkov rings

Photo-detectors to be upgraded

2 types of multi-anode photomultiplier tubes with finer granularity

New Front-End electronics at 40 MHz

Single photon angular resolution improved by 50% (RICH1) and 20% (RICH2)

Calorimeter and Muon Station upgrade

Current calorimeters will be kept for Run 3 but

- Front-End electronics rebuilt
- SPS/PS removed

PMT gain reduced by a factor of 5 to reduce degradation

To compensate, the front-end gain is increased by the same factor

 \rightarrow Custom low-noise FE ASIC developed

Reconstruction improved for high occupancy environment

Muon detector electronics upgraded during LS2

- First GEM layer to be removed
- 36 new PAD chambers to be installed in inner region

CP violation

Upgrade

Calorimeter and Muon Station upgrade

Software-only trigger in the upgrade Current L0 hardware trigger to be removed

 \rightarrow Must fully process events at 30 MHz

Information needed from all sub-detectors at initial trigger stage

Events stored in buffer, for online alignment, calibration

Event sized reduced to write to disk at $2\!-\!5~\mbox{Gb/s}$

Upgrade II: overview

HL-LHC

- Expect factor 10 increase in luminosity, interactions per bunch crossing
- Aim at exploiting HL-LHC phase to collect > 300 fb⁻¹
- \rightarrow Huge challenge for detectors and TDAQ system

Upgrade II: Physics

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K (1 < q^2 < 6} \operatorname{GeV}^2 c^4)$	$0.1 \ 274$	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$		0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$(^{+17}_{-22})^{\circ}$ 136	4°	-	1°	-
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad 44	14 mrad	-	4 mrad	22 mrad 610
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad 49	35 mrad	-	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	-	11 mrad	Under study 611
a_{sl}^s	33×10^{-4} 211	10×10^{-4}	-	3×10^{-4}	
$ V_{ub} / V_{cb} $	6% 201	3%	1%	1%	-
$B^0_*, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_* \to \mu^+ \mu^-)$	90% 264	34%	-	10%	21% 612
$\tau_{R^0 \rightarrow u^+ u^-}$	22% 264	8%	_	2%	
$S_{\mu\mu}$		-	-	0.2	-
$h \rightarrow c \ell^- \bar{w}$ LUV studies					
$\frac{b}{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002	_
R(D) $R(J/\psi)$	0.24 220	0.071		0.02	_
Charm					
$\Delta A_{cp}(KK - \pi\pi)$	8.5×10^{-4} 613	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\rm T} (\approx r \sin \phi)$	2.8×10^{-4} 240	4.3×10^{-5}	3.4×10^{-4} 3.5 × 10 ⁻⁴	1.0×10^{-5}	_
$x \sin \phi$ from $D^0 \rightarrow K^+ \pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x \sin \phi$ from multibody decays		$(K3\pi)$ 4.0 × 10 ⁻⁵	$(K_s^0 \pi \pi) 1.2 \times 10^{-4}$	$(K3\pi)$ 8.0 × 10 ⁻⁶	_