

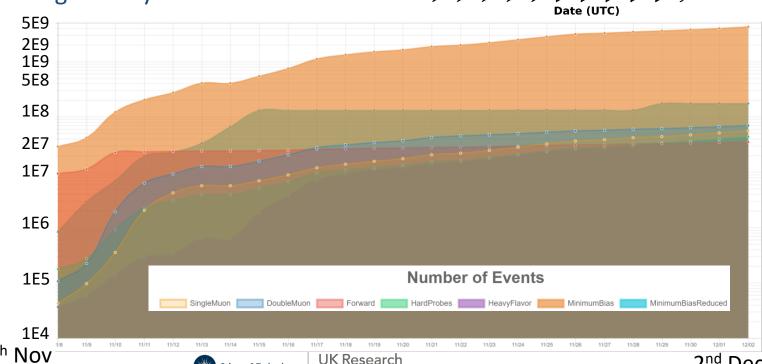
CMS Status Report

Sam Harper

UK Research and Innovation

on behalf of the CMS collaboration

LHCC Open Session 27 February 2019


Outline

- Summary of Heavy Ion Run
- Plans & Status for LS2
- Computing & Subsystems Status
- Latest Physics Results & Publications

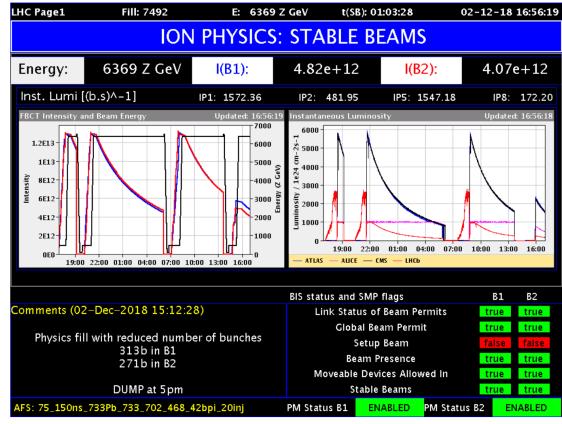
Heavy Ion Run Summary

- HI: 1.80nb-1 delivered, 1.71nb-1 recorded
 - ~95% data taking efficiency
- ~4.5 billion minimum bias events collected
 - sustained ~7GB/s HLT rate
 - non-trivial to achieve, for example required custom tracker firmware to achieve
- highly successful run, full dataset is now in the hands of eager analysers

number of events by dataset

and Innovation

Science & Technology


CMS Integrated Luminosity, PbPb, 2018, $\sqrt{s}=$ 5.02 TeV/nucleon

Heavy Ion Run Summary (II)

- LHC schedule optimised up to the last moment to give us maximal lumi!
 - last fill was just 2hrs long but gave us an additional 0.5% lumi!
- a very successful end to a very successful Run

Last physics fill of Run2 dumped on Dec 2nd @17:05

Many thanks to the LHC team and LPC coordinators!

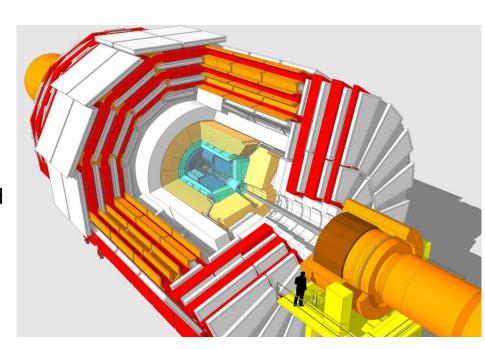
See you in Run3!

Outline

- Summary of Heavy Ion Run
- Plans & Status for LS2
- Computing & Subsystems Status
- Latest Physics Results & Publications

First a reminder, CMS detector was far from static over Run2, evolved significantly

2016:


- L1 trigger fully upgraded, now time multiplexed architecture using FPGAs, significant granularity improvements
- precision proton spectrometer installed

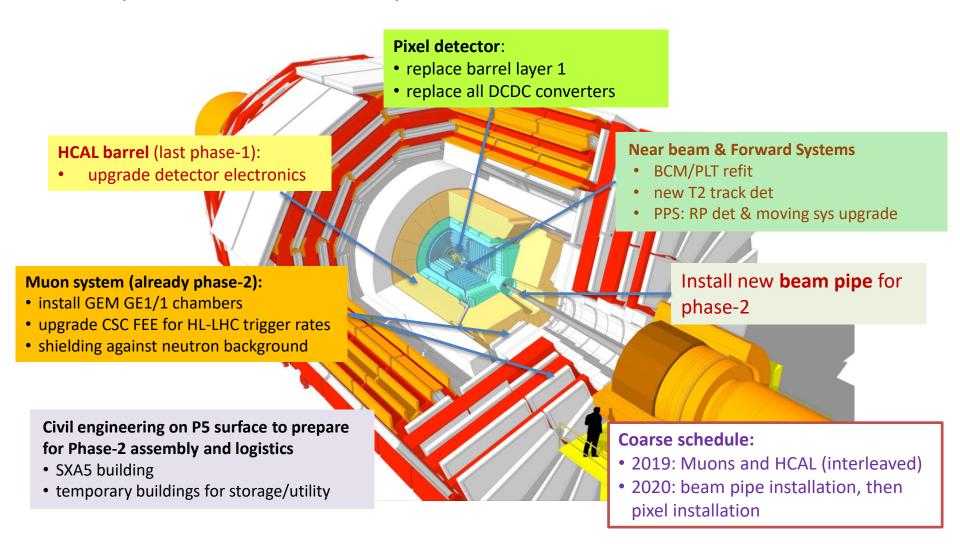
2017:

- pixel detector replaced; extra barrel and disk layers
- one ϕ sector of HCAL endcap electronics upgraded
- forward HCAL upgrade complete

2018:

- HCAL endcap electronics upgraded;
 reduced noise, x3 increase in
 longitudinal segmentation
- GEM slice test installed
- pixel dcdc converters replaced

continuously updating our detectors has given us valuable recent experience on how to perform and utilise upgrades


→major advantage for CMS in LS2 / Run3

cience & Technology

LS2 Major Projects

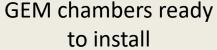
Summary: Finish Phase-1, Prepare for Phase-2

LS2 Status

- LS2 progressing well and on schedule
- pixel detector and beam pipe now removed!
- HCAL barrel electronics upgrade on going
 - completes phase-1 upgrade
- muon endcap upgrades about to proceed
 - marks start of phase-2 upgrade!

LS Status (II): Phase-2 Muon Upgrade

1) replacement of all on-CSC and part of ondisk electronics


 component production for new on-chamber electronics is on schedule → on target for the "ready for installation" milestone (11 Mar 2019)

2) 144 triple-GEM chambers to be added to the first endcap station

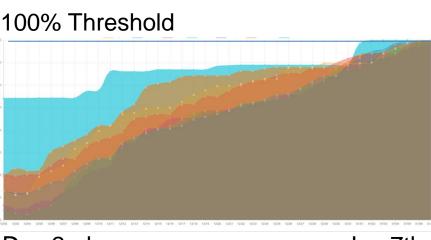
- additional layer in front of existing muon station (ME1/1) at $1.6 \le |\eta| \le 2.2$
- necessary for phase-2 to control trigger rates but get to reap benefits in Run3
- all GE1/1 chambers have been built and validated
- electronics production on-going
- on schedule to start installation at end of Aug 2019

the first ME1/1 is extracted on Jan 22 for electronics upgrades

Outline

- Summary of Heavy Ion Run
- Plans & Status for LS2
- Computing & Subsystems Status
- Latest Physics Results & Publications

Computing: Production activities


since last LHCC

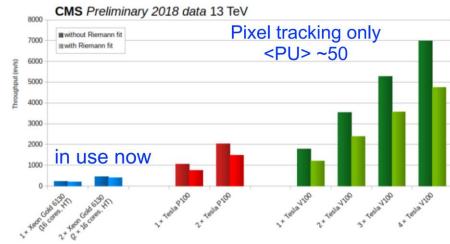
- samples for Moriond 19 finalized \rightarrow 8.2B events done, at AOD/Mini/Nano level
 - nanoAOD: very light weight dataformat
 - now routinely used by analysis teams
- sample @PU=200 for the MTD TDR done
- HI reco done just after winter break, using Tier-0 and HLT resources \rightarrow ~4.7B events ready for analysis
- ~ 300kCores available for offline (prod + analysis) jobs during the break
 - a record for CMS!
- we are well prepared for the complete reprocessing of Run2 data & MC
 - improved detector calibrations & object reco required for precision analyses
 - scheduled to start in May

November

Dec 2nd

UK Research

and Innovation


Jan 7th

Computing: Other relevant activities

- about to start the full processing of the 12B event b parking dataset
 - includes new optimized electron reco specifically developed for this analysis
 - extends the physics reach of CMS to a new phase space!
- transition to new (Run3) software stack progressing as expected
 - Rucio (Data Management), DD4HEP (Geometry Description), CRIC (Information System)

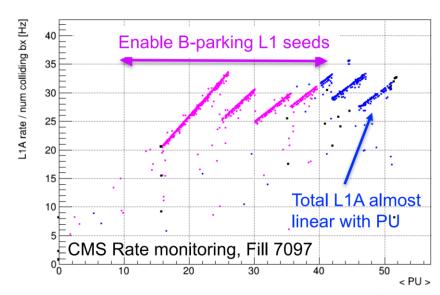
Science & Technology

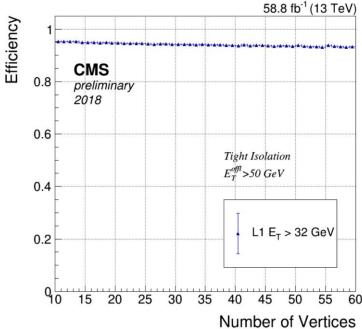
- latest CMSSW version contains the first framework code to handle heterogeneous architectures CMS Preliminary 2018 data 13 TeV
 - FPGA, GPU/CUDA already prototyped
 - a per module, per event, per job, per... granularity
 - expands our robust multithreading framework which has been critical to Run2 data taking
 - to be finalized in next major version (expected late spring)

advantages of using GPUs in tracking in HLT throughput increases by order of magnitude

L1 Trigger

operations

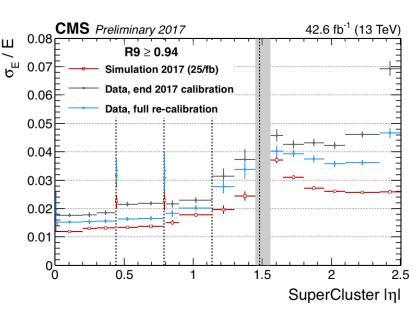

- extremely good year for L1T
- downtime was 50% of 2017


performance in 2018

- performance improved w.r.t 2017
 - lowered to ~28 GeV electrons, ~22 GeV muons
- rate linear with PU
 - significant work here into refining noise/PU suppression algos
- L1 accept rate typically 90kHz with approx. 340 L1 seeds

improvements in LS2

- exploit new information in Run3 available at L1: HCAL depth, GE1/1
- Kalman-filter based muon track finding for barrel, tested in 2018

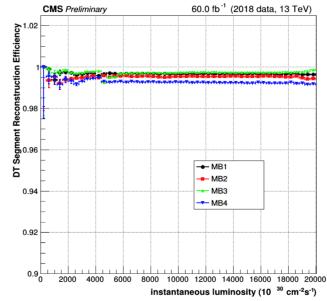

Calorimeters

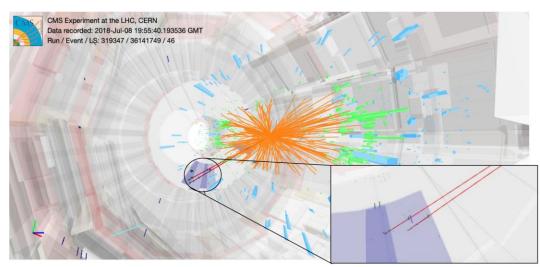
ECAL:

- prepared final calibrations for precision re-reconstruction of Run2 data
- first test chips available for phase-2 (very) front end drivers
 - ASIC works with all features functional
 - qualitative performance in agreement with expectations

HCAL:

- endcap upgraded detector understood and has good data/MC agreement
 - improvements will be fed into the re-reco
 Run2 data scheduled to start in May
- barrel upgrade in progress




Analog test setup at Saclay for ECAL VFEDs

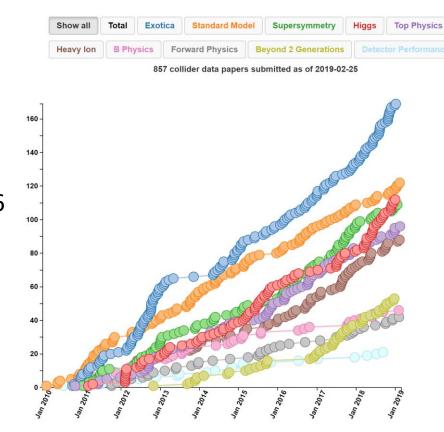
Muon System

- analysis of the full 2018 data set confirms the excellent performance of the CMS muon systems
 - already submitted physics results using it!
- 2018 saw the introduction of a single slice of the new GEM upgrade
 - regular part of the readout system
 - obtained valuable experience in operating it
 - now studying the performance while the full system is being installed

purple = gem test slice

Precision Proton Spectrometer

- Run2: summary
 - total of >100fb-1 recorded for physics with Roman Pots inserted from 2016-2018
- LS2: status
 - RP tracking and timing detector packages removed from tunnel for upgrades/refurbishment for Run3
 - work proceeding on schedule
- HL-LHC: motivation for continuing PPS program beyond Run3
 - feasibility of machine interface, detectors, under evaluation

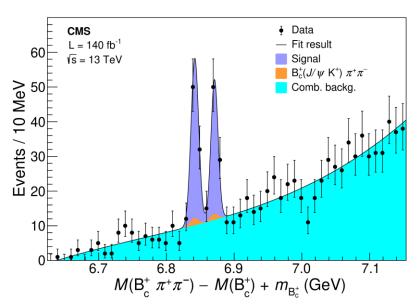


Outline

- Summary of Heavy Ion Run
- Plans & Status for LS2
- Computing & Subsystems Status
- Latest Physics Results & Publications

Publications Report

- CMS has now submitted 857 collider data papers since 2010
 - 30 since last LHCC meeting in Nov
 - full list: https://tinyurl.com/y9odauv6
- 2018 was a record year, submitted
 141 papers!
 - highest ever in any HEP experiment
 - previous record was CMS with 132 papers in 2017


Physics results since the last LHCC meeting

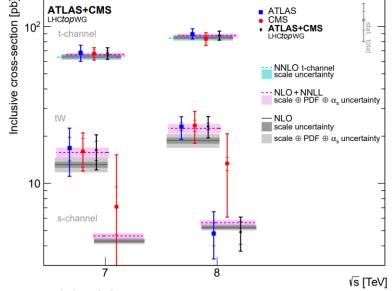
- b physics: observation of new excited B_c⁺ states: BPH-18-007
- top & standard model physics
 - tZq: TOP-18-008
 - top spin correlations: TOP-18-006
 - single top combination with ATLAS: TOP-17-006
 - top mass at 13 TeV in all jets + comb. with I + jets: TOP-17-008
 - search for W boson decays to three charged pions: SMP-18-009
- searches:
 - exotic decay H $\rightarrow \phi \phi \rightarrow X + 2\mu + 2b$ -jets: HIG-18-011
- HL-LHC / HE-LHC yellow reports:
 - ~40 analyses for HL/HE LHC submitted (~23 since last LHCC meeting)
 - http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html
 - main WG yellow reports submitted

First (in LHC) Run2 paper submitted!

https://arxiv.org/abs/1902.00571 submitted to Phys Rev Lett.

Observation of two excited B_c^+ states and measurement of the $B_c^+(2S)$ mass in pp collisions at $\sqrt{s}=$ 13 TeV

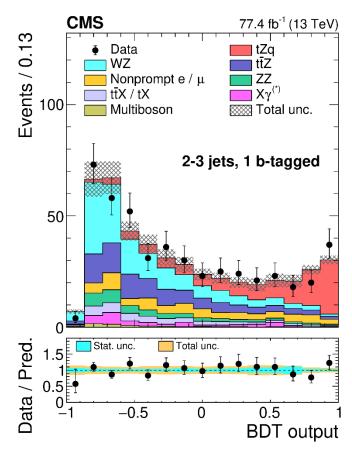
Ready with 140 fb⁻¹ after just two months from the end of the run demonstrates that that the detector and computing work flows are performing extremely well!


Abstract: Signals consistent with the $B_c^+(2S)$ and $B_c^{*+}(2S)$ states are observed in proton-proton collisions at $\sqrt{s}=$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 $\rm fb^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{b}c$ states are observed in the $B_c^+\pi^+\pi^-$ invariant mass spectrum, with the ground state B_c^+ reconstructed through its decay to $J/\psi\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the $B_c^+(2S)$ meson is measured to be 6871.0 \pm 1.2 (stat) \pm 0.8 (syst) \pm 0.8 (B_c^+) MeV, where the last term corresponds to the uncertainty in the world-average B_c^+ mass.

https://arxiv.org/abs/1902.07158 submitted to JHEP

Single Top: ATLAS + CMS Run1 Combination

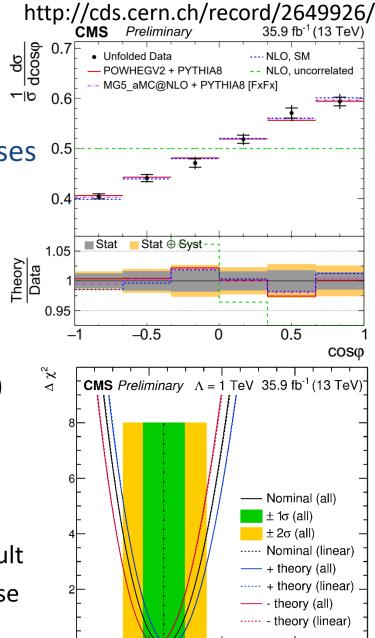
- sensitive test of new physics that modify tWb couplings or have new particles/interactions
- combine with ATLAS to maximise sensitivity to any SM cross-section deviations
 - combination reduces the 68% confidence interval on x-sec by 4 to 15% depending on process
 - excellent example of what can be achieved together
 - ATLAS will show the extracted V_{tb} results
- compatible with SM prediction


ible w	itii sivi pre	ulction			
\sqrt{s}	process	ATLAS (pb)	CMS (pb)	Combined (pb)	68% CI reduct
7 TeV	t-channel	68 ± 8	67.2 ± 6.1	67.5 ± 5.7	6.5%
	tW	16.8 ± 5.7	16^{+5}_{-4}	16.3 ± 4.1	9%
	s-channel	-	7.1 ± 8.1	-	-
8 TeV	t-channel	$89.6^{+7.1}_{-6.3}$	83.6 ± 7.8	87.7 ± 5.8	13%
	tW	$23.0^{+3.6}_{-3.9}$	23.4 ± 5.4	23.1 ± 3.6	4%
	s-channel	$4.8^{+1.8}_{-1.5}$	13.4 ± 7.3	4.9 ± 1.4	15%

Observation of Single Top with associated Z boson

- due to unitary cancellations in SM tZq production, new physics can show up here and *not* inclusive single top or ttZ
 - important complementary measurement!
 - additionally sensitive to flavor changing neutral currents
- **observed** with significance well over 5σ
- analysis done in the leptonic channel
 - events require 3 charged light leptons, ≥ 2 jets (with at least one b-tagged)
- $\sigma(pp \to tZq \to tllq)$:
 - $-111 \pm 13(stat)^{+11}/_{-9}(syst)$ fb
- compatible with SM prediction

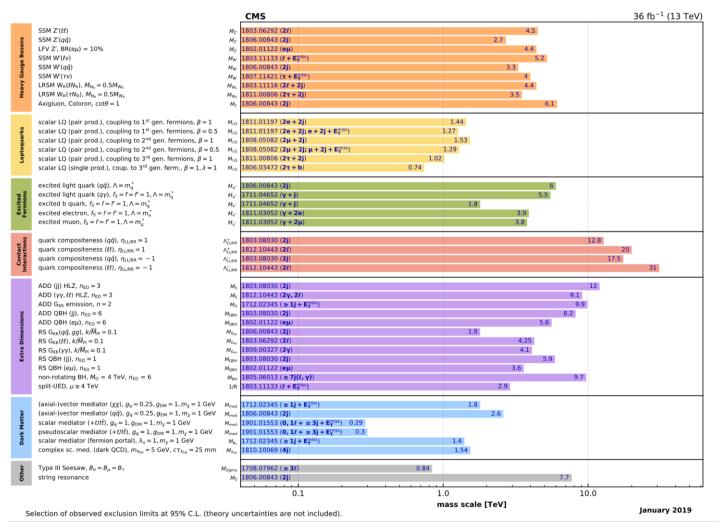
https://arxiv.org/abs/1812.05900 submitted to Phys Rev Lett.



not shown: ≥ 4 jets + 1 b-tag, 2 b-tag channels

Top spin correlation

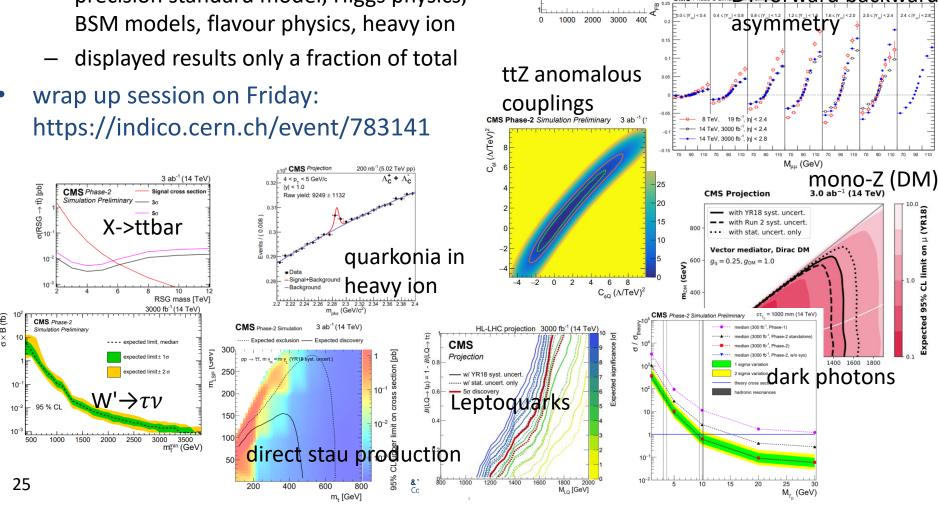
 fast decay of top quark allows unique probing of their spin structure


- spin structure sensitive to tt prod processes
 - powerful tool to probe new physics not accessible at the LHC
- measures all 15 coefficients of the spin density matrix
 - first time done at 13 TeV!
 - compatible with SM (with latest theory calcs)
- constrains anomalous chromomagnetic dipole moment of t quark
- strongest direct constraint to date!
 - factor 2 improvement w.r.t previous CMS result
 - more interpretations and Rivet data on release of the paper

0.2

 $C_{tG} / \Lambda^2 [\text{TeV}^{-2}]$

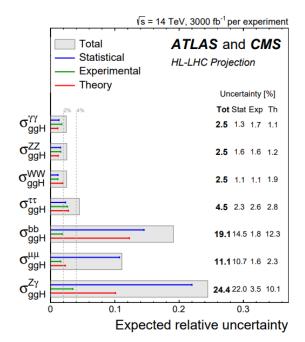
Exotic Searches: Status



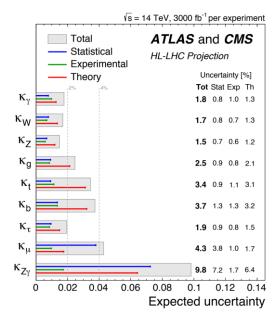
- significant number of search results using partial Run2 data
- currently working on full Run2 dataset updates!

HL-LHC Yellow report

- HL/HE-LHC workshop now concluded
- ~40 CMS physics analyses contributed across all topic areas
 - precision standard model, Higgs physics, BSM models, flavour physics, heavy ion
- wrap up session on Friday:

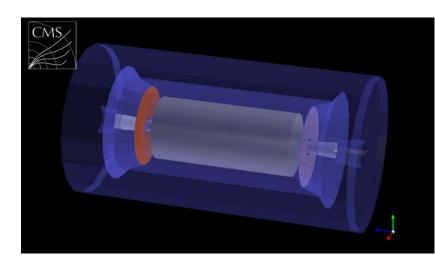

flavour anomalies

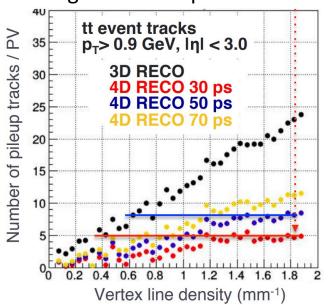
long. polarized WW


scattering

HL-LHC Yellow Report: Higgs couplings

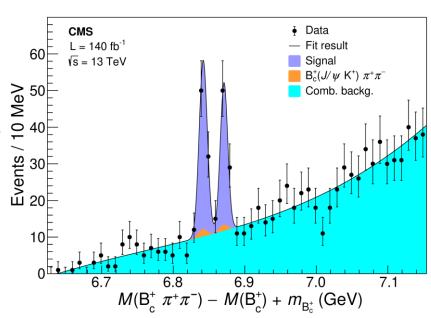
- key goal of HL-LHC program, determine the Higgs properties to a high precision
 - important constraints to new physics, expressed using the κ framework
- goal is to measure the Higgs x-sec in each production & observable decay mode
 - HL-LHC gives us access to the rare decays to $\mu\mu$ and $Z\gamma$ not yet observed
 - also Higgs self-couplings (see ATLAS talk)
- expect % level accuracy on main couplings
 - constrains Br(H->inv) to 2.5% at 95% CL
 - Γ_H constrained with 20% precision
 - 5% precision with assumption the new vector bosons couplings < SM vector boson couplings


https://cds.cern.ch/record/2650162/


Phase-2 TDRs

remaining Phase-2 TDRs progressing as expected

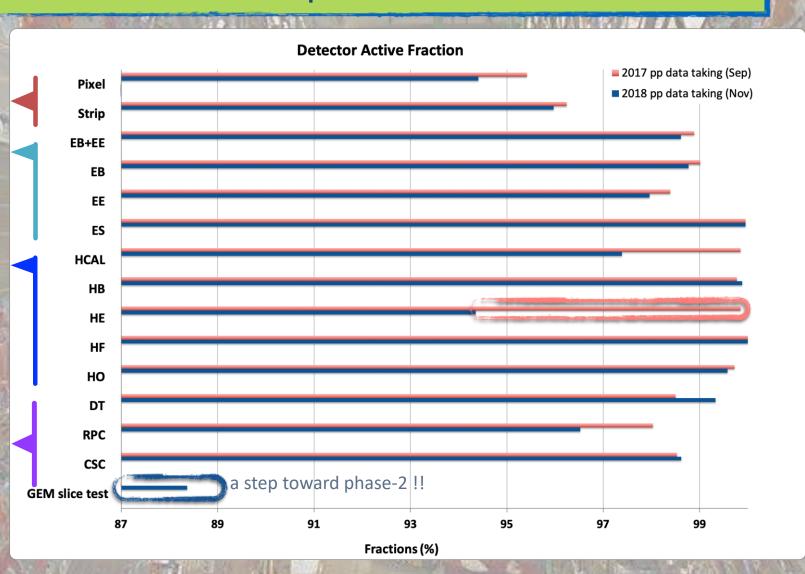
- MTD TDR due end of March
- L1 TDR due in Q1 2020
- DAQ/ HLT TDR due in Q2 2021



MIP Timing detector + performance

Summary

- Run2 is over, highly successful!
 - thank you LHC for all the data!
- CMS operations were extremely smooth in 2018
 - publication quality data & MC available to analysis teams around the winter break


- analysers are eagerly studying the data, expect a significant number of new results for upcoming conferences
- LS2 is now fully underway
 - proceeding on schedule, upgrades for muons & HCAL, definitive fixes for the CMS pixels

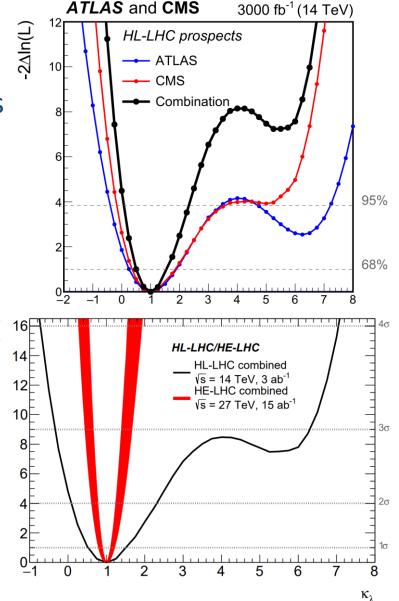
backups

2018 pp Summary: CMS Detector Status

Excellent and stable performance of all sub detectors

Top Spin: $\Delta \phi_{ll}$

	Measured	POWHEGV2	MG5_aMC@NLO	NLO calculation
$A_{ \Delta\phi_{ll} }$	0.103 ± 0.008	$0.125^{+0.004}_{-0.005}$	0.115 ± 0.001	$0.112^{+0.009}_{-0.012}$


- result is compatible with ATLAS measurement
 - ATLAS-CONF-2018-027, http://cds.cern.ch/record/2628770
 - note CMS analysis optimised for coefficient measurements not $A_{|\Delta\phi_{II}|}$ measurement
- since the ATLAS measurement, there have been found to be significant NNLO corrections to $A_{|\Delta\phi_{ll}|}$
 - https://arxiv.org/pdf/1901.05407.pdf
- at this time we consider the results to be compatible with the SM prediction

HL-LHC & HE-LHC Studies:

Higgs self couplings

- key goal of HL program, constrains Higgs potential close to minimum, verification of EWK SB of SM
 - $-\kappa_{\lambda}$: ratio of observed Higgs self couplings to SM prediction
- 3ab⁻¹ at 14 TeV, CMS + ATLAS
 - observe able at 4σ
 - $-\kappa_{\lambda}$ precision ~ 50%
- 15ab⁻¹ at 27 TeV, CMS + ATLAS
 - $-b\bar{b}\gamma\gamma,b\bar{b}\tau\tau$ only
 - $-\kappa_{\lambda}$ precision ~ 10-20%
 - no sys considered and with caveats that this assumes a given experimental performance with 800-1000 pileup events

