Imperial College London

The Search for Dark Matter at Colliders

Jonathan Costa (Imperial College)
On behalf of MasterCode collaboration

LHC (re)interpretation workshop 03 April 2019

Dark Matter Simplified Models

- The nature of Dark Matter (DM) is one of the most pressing issues in contemporary physics
- Weakly-interacting massive particles (WIMPs)
 - Weigh **0**(TeV)
 - It could be produced at the LHC
- Several approaches to DM searches at the LHC
 - Models that predict WIMPs capable of providing the cold DM
 - SUSY
 - Production of heavier new particles
 - Direct production of DM particles in association with a single SM particle (mono-X signature).

Dark Matter Simplified Models

Effective Field Theory (EFT)

- Focus on the mono-X signatures
- Drawback: DM/SM interactions are likely to be mediated by particles in the TeV mass range
- LHC might be capable of producing the mediator particle directly.

Dark Matter Simplified Models (DMSMs)

- Effective Lagrangians that include explicitly the mediator particle and its interactions with both DM and SM particles.
- Mediators of spin one (vector and axial-vector) Y (this work)
- Interactions are leptophobic
- DM particle is a neutral Dirac fermion χ
- Y-quark interactions are generation-independent

 $m_Y, m_\chi, g_{SM}, g_{DM}$

MasterCode framework

- Experimental results are often interpreted for fixed values of the couplings
- A more general approach is desirable for combining the direct DM constraints with those from the LHC

 \circ Obtaining the preferred cosmological value of $\Omega_{\gamma}h^2$ requires values of g_{DM} and g_{SM} that depend

on m_{χ} and m_{γ} .

micrOMEGAS

 $Madgraph 5_aMC@NLO$

DMSIMP

MultiNest

$$\chi^2 = \sum_{i}^{N_{meas}} \left(\frac{P_i - C_i}{\sigma_i}\right)^2$$

Astrophysical and LHC Constraints

Dark Matter density

Density of cold DM in the Universe is constrained by Planck measurements of the cosmic microwave background:

$$\Omega_{CDM}h^2 = 0.120 \pm 0.001$$

If dominant source is the WIMP:

$$\Omega_{\chi} h^2 \simeq \Omega_{CDM} h^2$$

$$\Omega_\chi h^2 \propto rac{1}{\langle \sigma v
angle}$$
 Annihilation cross-section

s-channel

$$\chi\chi\to Y^*\to SM$$

Resonant region

$$m_Y \simeq 2m_\chi$$

t-channel

$$\chi\chi\to YY$$

$$m_{\chi} > m_{Y}$$

Spin-dependent and -independent DM scattering

Monojet Constraints

CMS 35.9/fb of data from collisions @ 13 TeV Signal regions targeting monojet final states

$$\Delta \chi^2 = 5.99 \times \left(\frac{1}{R_i^{\text{UL}}(\mathbf{m})} \frac{\sigma_{\text{MG}}(\mathbf{m})}{\sigma_{\text{MG}}^{\text{fix}}(\mathbf{m})} \right)^2$$

Dijet Constraints

ATLAS and CMS

constraints from dijet invariant distributions on *Z'* resonances.

$$\Delta \chi^2 = 4 \times \left(\left[\frac{g_{SM}^4}{\Gamma_q + \Gamma_\chi} \right] / \left[\frac{(g_{SM}^*)^4}{\Gamma_q(g_{SM}^*) + \Gamma_\chi} \right] \right)^2$$

Preliminary results

Mass plane

Mass plane

Mass plane

Coupling plane

10⁻⁴⁹

10-50

Preliminary

10⁰

Direct Detection

 10^{-38} 10^{-39} 10^{-40} 10^{-41} 10^{-42} 10^{-43} 10^{-44} 10^{-45} 10^{-46} 10^{-47} 10^{-48}

10¹

DMSM spin-1 Axial-Vector

s-channel

10³

10²

 m_χ [GeV]

t-channel

Summary

- Global analysis of DMSMs using MasterCode
 - Vector and axial-vector mediators
 - \circ Four free parameters: $m_Y, m_\chi, g_{SM}, g_{DM}$
- Astrophysical and LHC constraints
 - Monojet and Dijet (LHC)
 - Cosmological constraint on DM density
 - Upper limits on spin-independent and -dependent scattering on nuclei.
- Two main mechanisms to bring the cosmological DM density into the allowed region:
 - Annihilation via t-channel X exchange and annihilation via Y boson in the s-channel
- σ_p^{SI} within the range accessible to the upcoming LZ and XENONnT experiments (may be also be below the neutrino floor)
- σ_n^{SD} within reach of upcoming PICO-500 and LZ experiments.

Thank you

cern.ch/mastercode