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Competence Center on Simulation and Big Data
data analysis and processing in particle physics

= LIP has been involved in the analysis of extremely large amounts of
data produced by different experiments in High Energy Physics for
a long time

= Expertise on the implementation and development of elaborate
multivariate techniques aiming at a vast range of applications

= Competence in efficient data processing to better use the available
computing resources



LIP competences
data analysis and processing in particle physics

spoT KNN QOctave SK-Learn
T™MVA TensorFlow neme
Keras ciusterrs Pandas onw CNNs

FPGAs RNNs ANN Distributed training Matlab
Pre-processing SVM RNNs K-fold GPUS CV

PCA NINs TheanO XGBoost



| Big Data

LIP Computing group has
a long experience in
handling huge quantities
of data

Strong collaboration with
CESGA - Centro de
Supercomputacion de
Galicia




LIP
computing group

The LIP computing group provides IT
services to LIP and its research groups:
e Integrated management of all
scientific computing resources
e Typical IT services for users and
administrative services
Support LIP physics research projects
R&D mostly in distributed computing
e-Science and e-Infrastructures
Grid Computing (driven by WLCG)
Cloud Computing
Technical coordination of INCD




' Running jobs: 268149
Transfer rate: 11.38 GiB/sec

wWLCG

Worldwide LHC Computing Grid
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Machine learning at LIP
training on modern tools

https://github.com/GilesStrong/ML_Tutorials
https://github.com/GilesStrong/LIP_DSS_Keras_Tutorial_2019
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Studying jets at the LHC
using ML to understand very subtle effects

= Machine learning is used since a few years to study jets in colliders

JHEP 01 (2017) 110



https://link.springer.com/article/10.1007/JHEP01(2017)110

Studying jets at the LHC
using ML to understand very subtle effects

= |learning different topics from samples populated differently (Demix method)

Jet Topics Mixed Jet Sample N
Mixed Jet Sample |

o000

Quark Jet X X X |
3 0000 _5
o000
XX N i
Jet Fractions Mixed Data Histogram I

Gluon Jet

Phys. Rev. Lett. 120, 241602 (2018)



https://link.aps.org/doi/10.1103/PhysRevLett.120.241602

Studying jets at the LHC
using ML to discriminate between gluon and quark jets

= Use of the Demix method for extraction of quark/gluon jet distinction by
demixing physical samples with different quark/jet fractions
o New noise reduction strategy:
m histograms trimmed to escape noisy areas by checking when two
consecutive points at both tails are incompatible with their
statistical error (20)

= The algorithm is able to extract two different topics from jet multiplicity in
MC samples for Z+jet (quark jet dominated) and dijet (gluon jet dominated)
o The accuracy of the separation is checked by comparison to pure
Z-quark jet and Z-gluon jet samples



Studying jets at the LHC
using ML to discriminate between gluon and quark jets
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slide by Frédéric Dreyer, Zlrich, May 2018

Studying jets at the LHC

using ML to understand jet emissions

» Lund diagrams in the (Inz6, In 0) plane
are a very useful way of representing
emissions.

» Different kinematic regimes are clearly
separated, used to illustrate branching
phase space in parton shower Monte
Carlo simulations and in perturbative
QCD resummations.

» Soft-collinear emissions are emitted
uniformly in the Lund plane
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JHEP 1309 (2013) 029


https://link.springer.com/article/10.1007%2FJHEP09%282013%29029

Studying jets at the LHC
using ML to tag jets passing through a dense medium

= distinction of quenched and unquenched jets using Lund planes
o usingt.=1/ (pT 2 ©7) instead of the traditional k splitting

Primary Lung/Plane: C/A

Primary Lund Plane: C/A Primary Lund Plane: C/A

0.0010 Vacuum QGP

SN T R - e ongoing work by Filipa Peres, UMinho MSc student

vacuum QGP



Searching for rare events at the LHC
finding a needle in many haystacks

= the interesting collisions at the Large Hadron Collider are extremely rare
so advanced multivariate techniques are required
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Searching for the unknown bt

an example: vector-like quarks

W, H,Z
/ / b7 j t
Singlets Tr r B
charge

B
Doublets )/ ( v )
L.H L.R
T
Triplets B
Y b



Searching for the unknown
an example: use of neural networks in searches for object tagging
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Fraction /0.1

Searching for the unknown

an example: use of neural networks in searches for object tagging
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https://link.aps.org/doi/10.1103/PhysRevD.98.092005

Searching for the unknown

an example: use of complex classification schemes in searches
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https://link.aps.org/doi/10.1103/PhysRevD.98.092005

Searching for rare events
finding a needle in many haystacks

= ML can also help us to make sure we don’t miss subtle new physics signals

q q



Searching for VLQ pair production
making sure we also target non-standard modes

Use of low-level information instead of explicit final states reconstruction

Jets (R = 0.4);
o pl, mass, eta, phi, btag
o 3 most energetic
Large-R (1.0) jets:
o pl, mass eta, phi, tau (1-5)
o 3 most energetic
Leptons (electrons and muons):

o pl, eta, phi ongoing work by Tiago Vale

o 2 most energetic MAP-Fis (UMinho) and
MET IDPASC PhD student




Searching for VLQ pair production
making sure we also target non-standard modes

= Keras with pandas and scikit-learn
o Tensorflow as the backend

= Inputs are normalized, standardized and ran through PCA to decorrelate
= Adamax with binary cross-entropy

= First architecture approach:
o 3 layers of 100 nodes
o selu as activation layer
o Batch normalization in between each dense layer and its activation
layer
o Sigmoid in the output layer
o Bayesian optimization machinery in place



Searching for VLQ pair production
making sure we also target non-standard modes

= First approach:

©)
@)
©)

Test pp-> g->TT against pp->G->TT

Stable training
ongoing work

Loss

0.632

0.630
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0.622

0.620
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Searching for VLQ pair production
making sure we also target non-standard modes

B Background
30 Signal
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Searching for Dark Matter
redefining the meaning of rare events

Z

Water tank

Gadolinium-loaded
liquid scintillator veto

High voltage
feedthrough

Liquid xenon
heat exchanger

120 veto PMTs —

7 tonne liquid xenon



Searching for Dark Matter
using ML for pulse classification in LZ

Goal: Identify the nature of a given pulse based ,,, s S ey
on its geometry, returning a prob. vector for i) S1 pulse example
different topologies [S1, S2, SPE, SE, MPE, Other] v

pulseArea

peakAmpl

Input: 17 geometric pulse parameters

Tools being used: IWE
1. Keras

2. Scikit-learn o - 5 "
pulseLength
Data used for training/testing:

1. LZ simulated data - 7.3M pulses

(No pulse-level MCTruth available)
Labels obtained by heuristic classifier with
parameter selection criteria (decision tree)

ongoing work by
Paulo Bras,
UCoimbra PhD student




Searching for Dark Matter

using ML for pulse classification in LZ

sigmoid Adamax

_valloss

—val_cc

10.9

10.8

10.7

10.6

validation accuracy

1:0:5

10.4

0.3

Training: ’
e 7.6M pulses total
o 20% used for validation
e Learning rate = 0.001 8
e Batch size = 256 £ 107
Optimization of the hidden section :
e Layer size =31
e depth =3
e Activation = sigmoid 55
e Optimizer = Adamax °
e Loss function = categorical_crossentropy

Average 99.93% accuracy

Efficiency loss dominated by S2/SE

“misclassification”, which doesn’t impact the analysis «

20 40

60

training epochs

80

Confusion matrix

100

Predicted class s1 S2 SE
Training label
S1 2587379 262 86
S2 532562244 985
SE TT8—] 4165 | 2540115




Searching for Dark Matter

other methods being evaluated for LZ

e Random Forests
o  Mainly used for finding the most relevant
parameters (feature importance):

Feature Importance test with RandForest

pulseLength90
pulseArea
promptFraction50ns
gArea
promptFraction500ns
promptFractionlus
promptFraction200ns
promptFraction100ns
pulseLength
topBottomAsymmetry
heihgt2length
promptFraction2us
skewnessl
skewness3
skewness2
promptFraction5us

0 0.05 0.1 0.15 0.2
Feature importance factor

Isolation Forests
o  Outlier detection: cleaning impure datasets
o Used in tandem with other methods

SVM
o  Optimization of selection regions in the
parameter hyperspace.

Convolutional Neural Nets
o  Bypass pulse parametrization by reading
pulse waveforms directly
o  Promising results with simplified synthetic
pulses
Semi-supervised learning with Kernels (RKHS)
(work by Francisco Neves)
o  Classification generalization with only a
small dataset of labeled data



Searching for Dark Matter
searching for Majorana Neutrinos with LZ

136Xe decays via 2vpB. If v =V, OvBB possible (beyond SM)

Binary classification
In a LXe TPC, the most significant bg src for Ov3 is

~2.5MeV single electrons from scattering with high energy y’s

e ongoing work by

5 Andrey Solovov,

r———- 7 ) "'“"‘-.,l, ,V‘ —eep- 7.

¥ ’.‘ 25Mev OVBBI : UCOImbra

MSc student

Decay to detection sim i ML Plan

Energy deposition using Use Keras for classification
GEANTH4 e  Parametrize signals so as to
find best discrimination
parameters, test using NN,
Random Forests, etc.

LXe secondary electron
production, drift and diffusion
Light propagation and PMT

array signal using ANTS2 in
distributed computing mode

Feed waveform directly into
CNN, sans parametrization
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Machine Learning in Analytical Chemistry
collaborating with UMinho colleagues

Study object:

= PCBs (Printed Circuit Boards)

= Train a model to classify PCBs as (not) contaminated fed with data obtained from chemical analysis.

Contaminated PCB

Data from
Chemical Analysis

*dark sorcery *

Not contaminated
PCB




Machine Learning in Analytical Chemistry
data analysis methods on chromatographic techniques

ongoing work by
Diogo Barros,
UMinho

MSc student

60 datapoints

~12000 datapoints




Exploring synergies between academia and industry
2nd edition of a workshop started last year

SYMPOSIUM

www.lip.pt/data-science-2019
Braga, PORTUGAL
28-29 MARCH 2019

DA T BRIDGING FUNDAMENTAL
RESEARCH and INDUSTRY

SCIENCE




Machine Learning as a service
collaboration with Nielsen

= How to predict Auditors attrition?

Attract and Hire . ( Reciiitt )

Onboard

Manage and Direct

Develop Retire

Separation
Retain
X ’.:lfl‘il

Guide and Support Develop and Recognize

= Try to predict probability of an auditor to leave the company
based on data related with his activities




Machine Learning as a service
collaboration with Nielsen

= Ongoing work

AUDITORS WORK MAP

107*

* Clean Data (make it trustworthy)
* Identify most sensitive quantities
* 1st level: direct correlations
* 2nd level: building up complex

variables

Probability

1072




summary

e in HEP we have a long time
tradition (and expertise) in the
analysis of large and complex
data

e the most suitable technique
has to be chosen for each
problem

o uncertainties and
imperfect datasets

e synergies with other fields and
activities possible/desirable




