

Universidade do Minho Escola de Ciências LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

[Big data and machine learning at LIP]

Nuno Castro nfcastro@lip.pt

(thanks to G. Milhano, A. Lindote and R. Conceição for the help in the preparation of the slides)

2nd Joint Workshop IGFAE/LIP, Santiago de Compostela, 26 April 2019

POCI/01-0145-FEDER-029147 PTDC/FIS-PAR/29147/2017

Competence Center on Simulation and Big Data data analysis and processing in particle physics

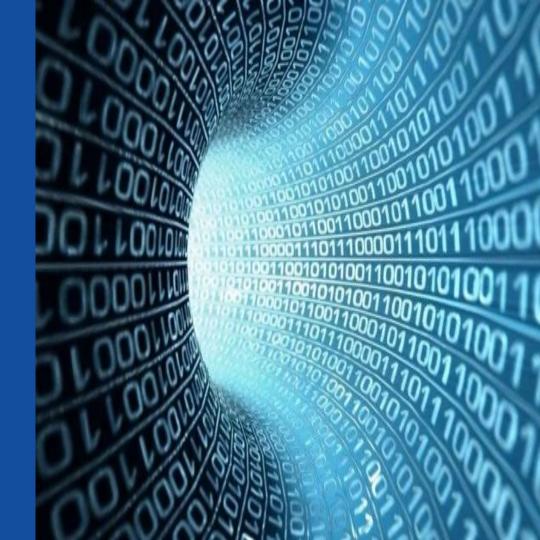
- LIP has been involved in the analysis of extremely large amounts of data produced by different experiments in High Energy Physics for a long time
- Expertise on the implementation and development of elaborate multivariate techniques aiming at a vast range of applications
- Competence in efficient data processing to better use the available computing resources

LIP competences data analysis and processing in particle physics

BDT KNN Octave SK-Learn TMVA TensorFlow Numpy Keras GlusterFS Pandas DNN CNNs FPGAs RNNs ANN Distributed training Matlab Pre-processing SVM RNNs K-fold GPUs CV PCA NNs Theano XGBoost

Big Data

- LIP Computing group has a long experience in handling huge quantities of data
- Strong collaboration with CESGA - Centro de Supercomputación de Galicia

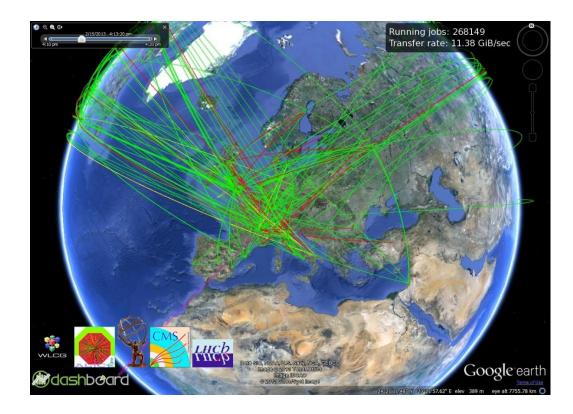


LIP computing group

The LIP computing group provides IT services to LIP and its research groups:

- Integrated management of all scientific computing resources
- Typical IT services for users and administrative services
- Support LIP physics research projects
- R&D mostly in distributed computing
- e-Science and e-Infrastructures
- Grid Computing (driven by WLCG)
- Cloud Computing
- Technical coordination of INCD

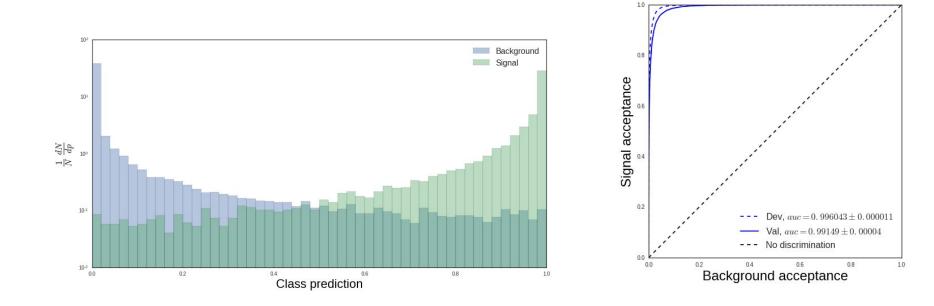
LIP WLCG



Machine Learning at LIP

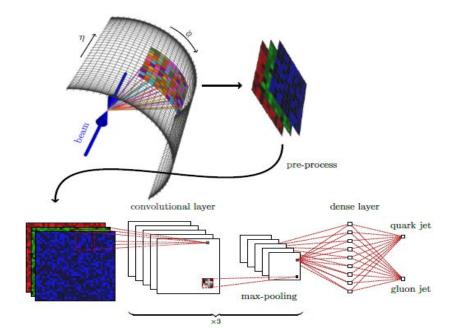
Machine learning at LIP training on modern tools

https://github.com/GilesStrong/ML_Tutorials https://github.com/GilesStrong/LIP_DSS_Keras_Tutorial_2019



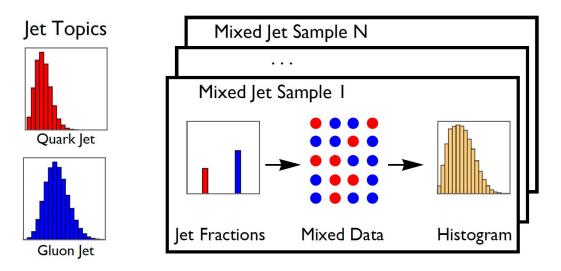
Studying jets at the LHC using ML to understand very subtle effects

• Machine learning is used since a few years to study jets in colliders



Studying jets at the LHC using ML to understand very subtle effects

learning different topics from samples populated differently (Demix method)

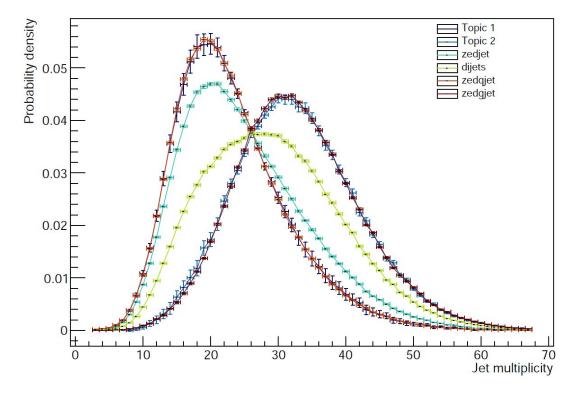


Phys. Rev. Lett. 120, 241602 (2018)

Studying jets at the LHC using ML to discriminate between gluon and quark jets

- Use of the Demix method for extraction of quark/gluon jet distinction by demixing physical samples with different quark/jet fractions
 - New noise reduction strategy:
 - histograms trimmed to escape noisy areas by checking when two consecutive points at both tails are incompatible with their statistical error (2σ)
- The algorithm is able to extract two different topics from jet multiplicity in MC samples for Z+jet (quark jet dominated) and dijet (gluon jet dominated)
 - The accuracy of the separation is checked by comparison to pure
 Z-quark jet and Z-gluon jet samples

Studying jets at the LHC using ML to discriminate between gluon and quark jets

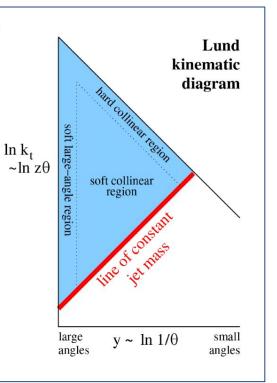


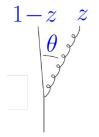
ongoing work by João Gonçalves, IST MSc student

Studying jets at the LHC using ML to understand jet emissions

- Lund diagrams in the (ln zθ, ln θ) plane are a very useful way of representing emissions.
 - Different kinematic regimes are clearly separated, used to illustrate branching phase space in parton shower Monte Carlo simulations and in perturbative QCD resummations.
 - Soft-collinear emissions are emitted uniformly in the Lund plane

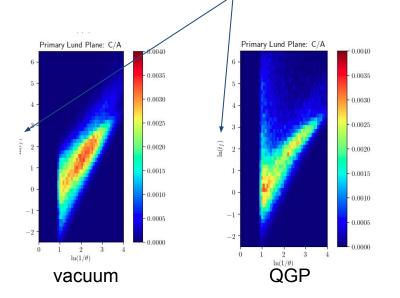
$$dw^2 \propto \alpha_s \frac{dz}{z} \frac{d\theta}{\theta}$$

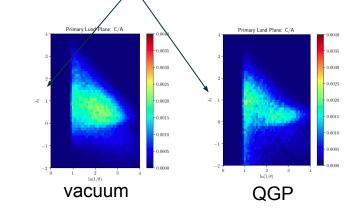




Studying jets at the LHC using ML to tag jets passing through a dense medium

- distinction of quenched and unquenched jets using Lund planes
 - using $t_f = 1 / (p_T z \Theta^2)$ instead of the traditional k_T splitting

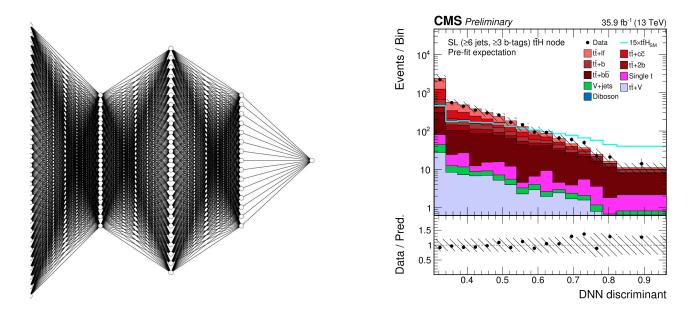


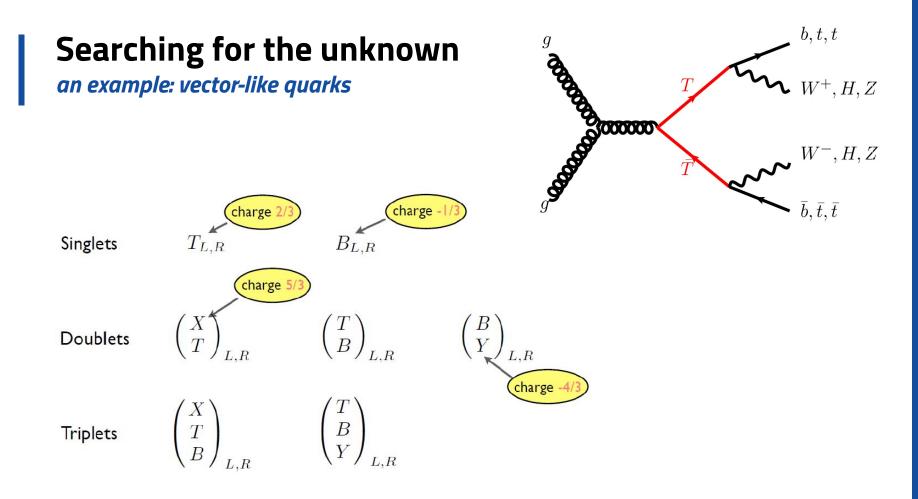


ongoing work by Filipa Peres, UMinho MSc student

Searching for rare events at the LHC finding a needle in many haystacks

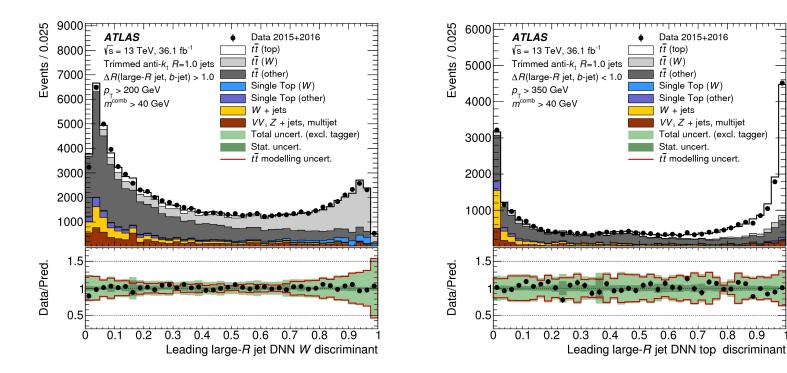
 the interesting collisions at the Large Hadron Collider are extremely rare so advanced multivariate techniques are required





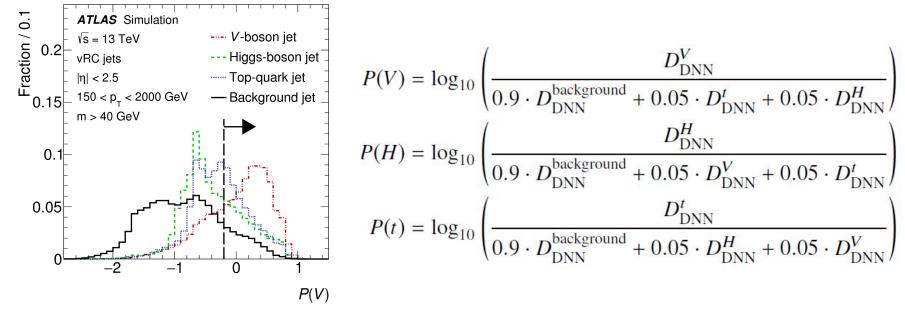
Searching for the unknown

an example: use of neural networks in searches for object tagging



Searching for the unknown

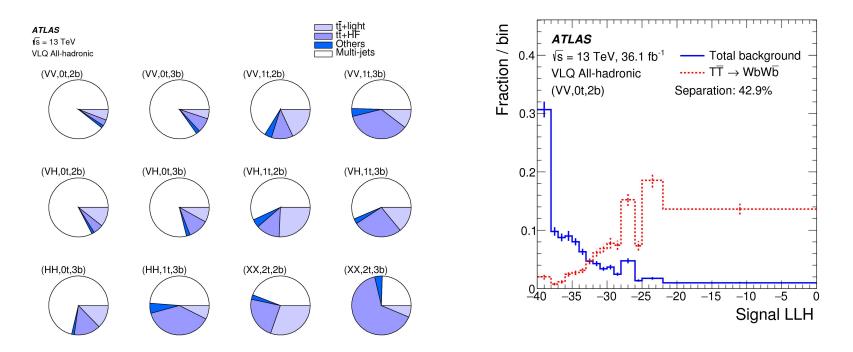
an example: use of neural networks in searches for object tagging



Phys. Rev. D 98 (2018) 092005

Searching for the unknown

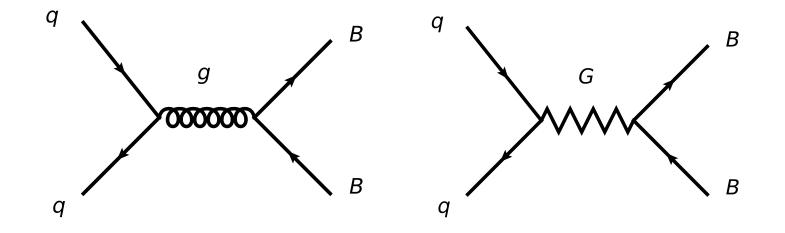
an example: use of complex classification schemes in searches



Phys. Rev. D 98 (2018) 092005

Searching for rare events finding a needle in many haystacks

ML can also help us to make sure we don't miss subtle new physics signals

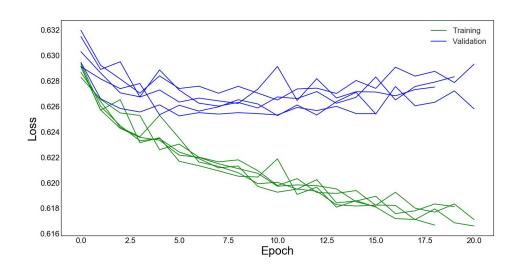


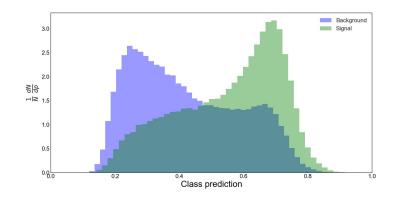
- Use of low-level information instead of explicit final states reconstruction
- **Jets** (R = 0.4):
 - pT, mass, eta, phi, btag
 - 3 most energetic
- Large-R (1.0) jets:
 - pT, mass eta, phi, tau (1-5)
 - 3 most energetic
- Leptons (electrons and muons):
 - pT, eta, phi
 - 2 most energetic
- MET

ongoing work by Tiago Vale MAP-Fis (UMinho) and IDPASC PhD student

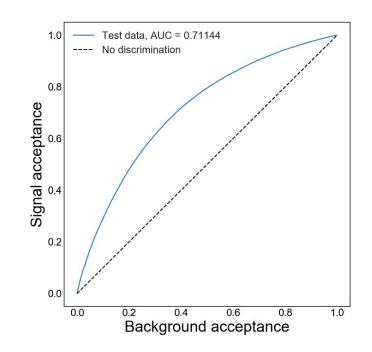
- Keras with pandas and scikit-learn
 - Tensorflow as the backend
- Inputs are normalized, standardized and ran through PCA to decorrelate
- Adamax with binary cross-entropy
- **First** architecture approach:
 - 3 layers of 100 nodes
 - selu as activation layer
 - Batch normalization in between each dense layer and its activation layer
 - Sigmoid in the output layer
 - Bayesian optimization machinery in place

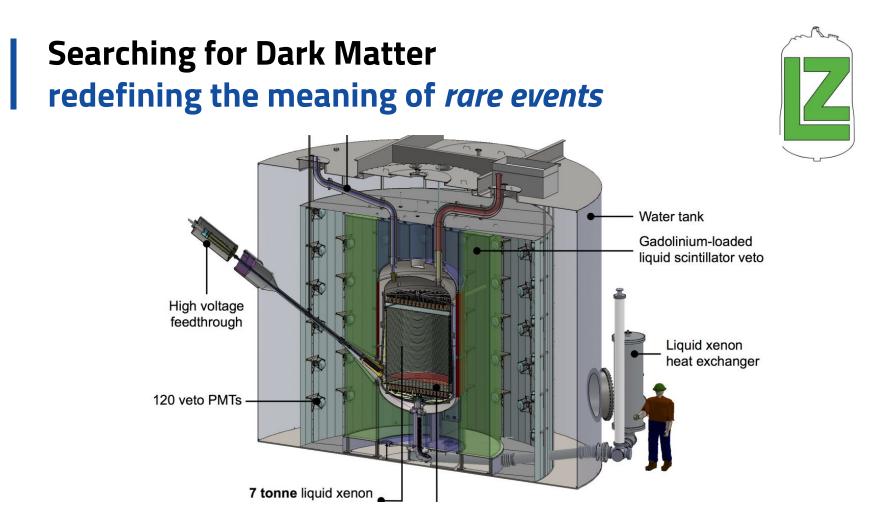
- First approach:
 - Test pp->g->TT against pp->G->TT
 - Stable training
 - ongoing work





- Decent discrimination
- Background and signal are HG and SM pair-production





Searching for Dark Matter using ML for pulse classification in LZ

Goal: Identify the nature of a given pulse based on its geometry, returning a prob. vector for different topologies [S1, S2, SPE, SE, MPE, Other]

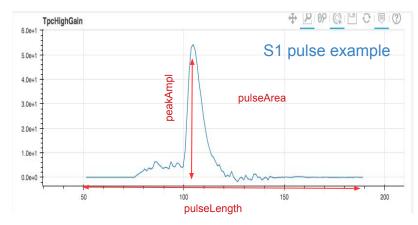
Input: 17 geometric pulse parameters

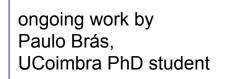
Tools being used:

- 1. Keras
- 2. Scikit-learn

Data used for training/testing:

 LZ simulated data - 7.3M pulses (No pulse-level MCTruth available) Labels obtained by heuristic classifier with parameter selection criteria (decision tree)





Searching for Dark Matter using ML for pulse classification in LZ

Training:

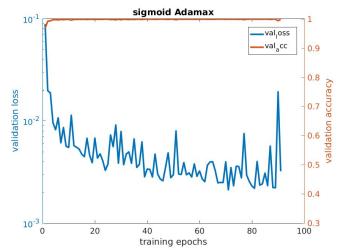
- 7.6M pulses total
- 20% used for validation
- Learning rate = 0.001
- Batch size = 256

Optimization of the hidden section

= 3

= Adamax

- Layer size = 31
- depth
- Activation = sigmoid
- Optimizer
- Loss function
- = categorical_crossentropy



	Confusion matrix				
	Predicted class	S1	S 2	SE	
	Training label				
	S1	2587379	262	86	
+	<u>S2</u>	53	2502211	985	
	SE	118	4165	2540115	

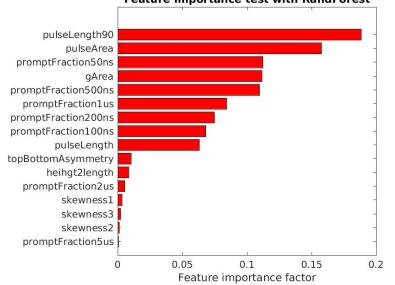
Average 99.93% accuracy

Efficiency loss dominated by S2/SE "misclassification", which doesn't impact the analysis

Searching for Dark Matter other methods being evaluated for LZ

Random Forests

• Mainly used for finding the most relevant parameters (feature importance):



Feature Importance test with RandForest

- Isolation Forests
 - Outlier detection: cleaning impure datasets
 - Used in tandem with other methods
- SVM
 - Optimization of selection regions in the parameter hyperspace.

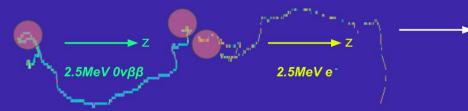
Convolutional Neural Nets

- Bypass pulse parametrization by reading pulse waveforms directly
- Promising results with simplified synthetic pulses
- Semi-supervised learning with Kernels (RKHS) (work by Francisco Neves)
 - Classification generalization with only a small dataset of labeled data

Searching for Dark Matter searching for Majorana Neutrinos with LZ

¹³⁶Xe decays via $2\nu\beta\beta$. If $\nu = \overline{\nu}$, $0\nu\beta\beta$ possible (beyond SM)

In a LXe TPC, the **most significant bg src** for $0\nu\beta\beta$ is ~2.5MeV single electrons from scattering with high energy γ 's



Decay to detection sim

- Energy deposition using GEANT4
- LXe secondary electron production, drift and diffusion
- Light propagation and PMT
 array signal using ANTS2 in
 distributed computing mode

ML Plan

Binary classification

- Use Keras for classification
- Parametrize signals so as to find best discrimination parameters, test using NN, Random Forests, etc.
- Feed waveform directly into CNN, sans parametrization

ongoing work by Andrey Solovov, UCoimbra MSc student

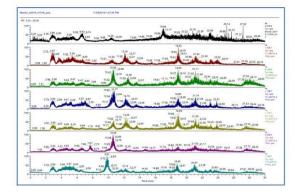
Collaborations beyond HEP

Machine Learning in Analytical Chemistry collaborating with UMinho colleagues

Study object:

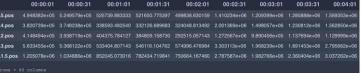
- PCBs (Printed Circuit Boards)
- Train a model to classify PCBs as (not) contaminated fed with data obtained from chemical analysis.

Machine Learning in Analytical Chemistry data analysis methods on chromatographic techniques



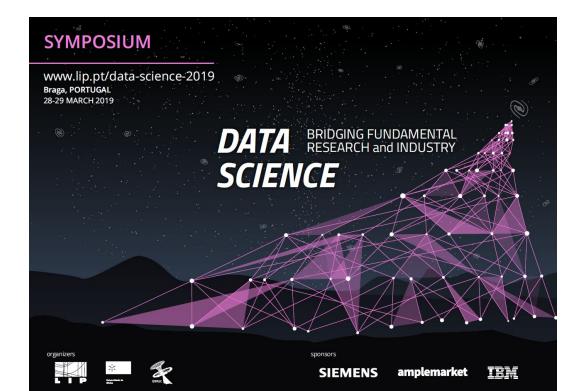
~12000 datapoints





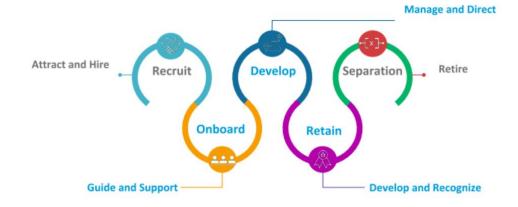
ongoing work by Diogo Barros, UMinho MSc student

Exploring synergies between academia and industry 2nd edition of a workshop started last year



Machine Learning as a service collaboration with Nielsen

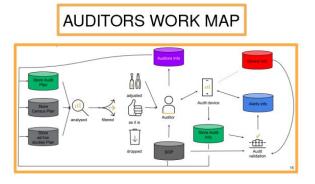
How to predict Auditors attrition?



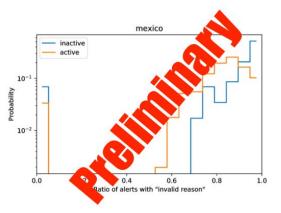
 Try to predict probability of an auditor to leave the company based on data related with his activities

Machine Learning as a service collaboration with Nielsen

Ongoing work



- Clean Data (make it trustworthy)
- Identify most sensitive quantities
 - 1st level: direct correlations
 - 2nd level: building up complex variables



summary

- in HEP we have a long time tradition (and expertise) in the analysis of large and complex data
- the most suitable technique has to be chosen for each problem
 - uncertainties and imperfect datasets
- synergies with other fields and activities possible/desirable

